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Phase transitions in commensurate and
incommensurate crystals
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Aperiodic Crystal: diffraction pattern with delta peaks

n
k = ) hal hi integers
i=1

Rank n > Dimension D

Examples: Incommensurate modulated phases
Aperiodic composites
Quasicrystals




Aperiodic Crystal: diffraction pattern with delta peaks

n
k = » ha; hi integers
i=1

Rank n > Dimension D

Examples: Incommensurate modulated phases
Aperiodic composites
Quasicrystals

Phase transitions:

From periodic crystal to incommensurate modulated phase,
between incommensurate phases,

between various phases of aperiodic composites,

In quasicrystals and between quasicrystals and approximants




Group-subgroup Phase Transitions

Order parameter n describes deviation of order in HT phase

Minimization of the Free Energy F (T, )

F

T>T.
Second order




Landau theory
Order parameter 1 describes change in structure / symmetry

Landau free energy

a(T) 2 1 4
F ==’ -
2 /'7 + 4 +.oo

Free energy 1s invariant under high-symmetry group GO ; order parameter

belongs to irreducible representation of this group; order parameter 1s
invariant under low-symmetry group G.




Landau theory

Order parameter 1 describes change in structure / symmetry

Landau free energy

a(T) 2 1 4
F ==’ -
2 /'7 + 4 +.oo

Free energy 1s invariant under high-symmetry group GO ; order parameter

belongs to irreducible representation of this group; order parameter 1s
invariant under low-symmetry group G.

In general, higher-dimensional order parameter if dimension of the
irreducible
representation 1s higher than 1.

F = Y a@)gnm; + D Bikminime + D YijkmMiNiMeNm +
ij ijk ijkm
8




Iransition from periodic to aperiodic crystal:
characterised by irrep of the 3D space group
labelled by star of k vectors and irrep of the little group of k

D(R|t) = exp(ik.t)D,(R)

Example: from a crystal with space
group Pcma towards a modulated
phase with wave vector

k = aa*

Point group of the little group: 2mm

D(my,|0) = —1, D(m;la/2) = —exp(ira)




Phase transitions in commensurate and
incommensurate crystals

Modulated crystals

Incommensurate composites

Quasicrystals and tilings

Incommensurate magnetic structures




Acta Cryst. (1964). 17, 614

An anomaly in the crystal structure of Na,COj;. By Eruy Brouxs and J. W. Visser, Technische Phy-
sische Dienst T.N.O.-T.H., and P. M. pE WovLrr, Technische Hogeschool, Delft, The Netherlands

(Received T November 1963)
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A Guinier camersa as described by Lenné (1961) was
used for the high-temperature work. In this camera the
powder pattern is continuously recorded on a moving
film while the temperature of the sample is raised. Three
phases were discernible, in accordance with the differen-
tial thermal analysis results of Reisman (1959), whose
data for the transition temperatures are used below:

(@) The C-centered monoclinic ¢ phase below 361 °C (with
extra lines)

(b) The C-centered monoclinic § phase between 361 °C
and 489 °C)

(¢) The primitive hexagonal « phase above 489 °C, stable
up to the melting point.

P.M. de Wolff




High temperature:
Unmodulated crystal.
Positions. N + r;

|ncommensurate modul ated phases
Positions 1D system: n + rj +fj (q.n)

Transition from unmodulated to incommensurate modulated.

Modulation functions f may be smooth or discontinuous:
the type changes at the discommensuration transition: effects on the dynamics

Usually the wave vector of the modulation changes with temperature,
but the superspace group symmetry remains the same. Even for commensurate
values. Then the 3D space group is determined by the SSG.

Exceptions: - when the modulation changes character;
- when more wave vectors are involved ;e.g. Iq -> 2q
Then a phase transition occurs
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commensurate Incommensurate rank =3
rank=3 rank=4




Embedding into superspace
with dimension equal to the rank

ks:(kakl)
p(r) = 2 exp(ik,r)

v

ps(r,ry) = Zp(wks) exp(iks.rs)
k

8




Embedding into superspace
with dimension equal to the rank

k.=(kky)
p(r) = Y exp(ik,r)

v

ps(r,rr) = Zp(ﬂks) exp(iks.rs)
k

S

High symmetry: without modulation
G = Go X Ed

Low symmetry: with modulation

subgroup of G : n -dimensional space
group: superspace group



Phys. Space

Red Blue
Transition from 1D periodic to 1D aperiodic = 2D periodic

Symmetry from GoXE! -> G
Rank is 2 Diffraction 4; a™ + k2 q

16



Transition from 2D periodic to 2D periodic

Rank remains 2 Diffraction 4; a* + ko q/2

17



Semi-microscopic models explain essentials of the transition

Vi(uy) + Z Vo(n — my g, )
m

1st neighbour
Discrete frustrated ¢ ¢4 model: 2nd neighbour

1
, (2 1
' = E (5 Au, +u, + Buyu,_ o + Cuntg, g + Cuntiy_y + Dyt o, >

T

Phases: para-phase un =0
commensurate superstructure
incommensurate modulated phase

Studied with J.A. Tjon,A. Rubtsov
and V. Savkin




Phase Diagram of DIFFOUR model
(discrete frustrated ¢p* model)

Lifshitz point
—

a=-A/D, d=B/D

P
0,0,0,0,0,0,0,0

1

2

- c,c.c,c,cccce c,-C,C,-C,C,-C

c,C,c,-c,-C,-c -

1

|
5 -4 3




1st order 2nd order

T

Lock-in Modulated High symmetry
commensurate iIncommensurate rank =3
rank=3 rank=4

'Typical phase diagram: high T : space group symmetric
below critical T: incommensurate phase
plane wave limit (continuous modulation)
discommensuration limit (discontinuous)
below lock-in I: commensurate

A/D 1n the model corresponds to 'I' in mean field phase diagram




Discommensuration Transition in DIFFOUR model
T T T

Koy

0.2 0.4 0.6

a low-T commensurate, 6-fold
Xn VEISUS Xn-1 b incommensurate, smooth
C Incommensurate, discommensurations




Phase transition: rank 2 (periodic) to rank 3 (aperiodic)

Example of a transition from a 2D periodic
to a 2D aperiodic (3D periodic) system:

soft mode at the zone boundary at (o, 1/2)

b

_ un—a)2 + §(un _ un—2a)2 + (un _ un—3a)2

(4
- un—b)2 + E(un - un—a—b)2 + g(u1z _ un—a-i—b)z)

a = 0.1352, b = -0.3047, ¢ = 0.2148, d = -0.15, e = 0.575, cg= 0.575
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A =(e:/|7, 112)




Phase transition

3

lq-2q

Biphenyl and BaMnlF;

2F

1.5¢

it

0.5}
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A\

0 0.5

1 1.5 2 2.5 3

T < To

Free energy on the Brillouin Zone

Ct. K. Parlinski (19920

T >T,: Unmodulated : A

T1  : Phase transition to 1q state -> rank 4 :B
To : Phase transition to 2q state -> rank 5 :C

24




Incommensurate composites




Composites

= ) + nai + fi(ad) + nay), (i=1,2)
W = (©2m+i—1)b/2,

k = hl/al -1- hg/ag, !/ = h3/b

o o o o
Embedding of the composite

(:1:(()7;) +na; — Zit + fi(xgi) + na; + At) ,(2m +1i — 1)b/2,t) , (1
A= Zy—7




Ditfraction peaks

k = (hl/al—l-hg/az, h3/b)

hi=hy=0 common reflections
ho =0 reflections system 1
hi=0 reflections system 2
hi # 0, hy # 0 sum reflections

If sum reflections are present: each subsystem
IS modulated by the other one.




Aperiodic Composites by Self-hosting:
Host and guest are made from the same pure element.
Nelmes, McMahon Phys. Rev. Lett. 83, 4081 (1999)

Figure 1 The high-pressure structure of barium IV discovered by Nelmes et al.’. a, Structure projected
onto the x—y plane, showing the atoms of the host structure (yellow) with heights in units of ¢, and
the guest chains (red). b, Electron density map in the x—z plane of the atomic chain (right) with repeat
distance ¢, and the side of a host cylinder (left). The ratio ¢/g, is not a rational number, making the
structure incommensurate — that is, there is no distance at which it repeats exactly.




Discommensuration transition: symmetry the same

d

Embedding of composite with continuous modulation.

Four types of reflections: common to the subsystems, belonging to one
of the subsystems, combinationsmsf reflections of both .




Embedding of composite with discontinuous modulation.

Example of a symmetry preserving phase transition with weak

anomaly 1n the spec. heat, and consequences for dynamics.
30




amplitudes: 0.05, .

amplitudes .85, 0.1, 2.2, 0.1
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2D Example

2D composite
of rank 4

H = ha" + kc* + m1b* + mo(c*/2 + da*)

cmm/(0y, 10)

= ha" + kc*/2 + m1b* + myda*
b* = ~a*

pmm(0y, 00)




Phase transition between phases of the same rank

Example: rank = 3

hia® + hac™ + hgyc”
(a* +c*)/2

hi(a* +c*)/2 + hy(a* —c*)/2 + hzyc”

In superspace doubling of the unit cell.
Changes in the diffraction affect main
reflections of one system only.




Change of the rank 1n the transition

Model example

F - )2 -+ i( (1))4 -+ ﬁug)ugzl -+ 5?1,%1)?1/%122)

—I—)\ZV —az(z)
—(2m+1i—1)b/2)?,

ug) — 7z,

— naj

aj=(1/a1,0), a5=(1/a2,0), and a5=(0,1/b)

In superspace additional dimension.
Changes in the diffraction aftect sum peaks.

Example: urea-nonadecane (Toudic)
33




Single Crystal ; > 4 " ?" A
nonadecane - urea B N\ ;j\?;“.ttt‘ \

SV AVAV
CioDso - COND),  EIQGH Ak

Curée=11.0A Caic= 1.277%(n-1)+3.48 A

‘ Study of the phase transition at 3 dimensions

High Symmetry Phase : Low Symmetry Phase :
hexagonal orthorhombique

P6,22 P2,2,2,

Orientational Disorder Anti-ferro shearing of urea
of the alkanes Anti-ferro ordering of the alkanes




Diffraction Image of a Composite Aperiodic Crystal (Rank 4)

Qhk,m =ha*+kb*+Ic,"+mc,”

.

Single Crystal

nonadecane - urea

C19D40 - CO(ND,);
Cyrea = 11.02 A

= 26.46 A

(2001)

Cnonadecane

v =0.42

b (2 002)

G43
LLB (Saclay)

Curée=11.0A Caic= 1.277%(n-1)+3.48 A

R. Lefort et al. Phys. Rev. Lett. 77,19 (1996); T. Weber (1996)




Hidden Degrees of Freedom in
Aperiodic Materials

Bertrand Toudic,™2* Pilar Garcia,™2 Christophe Odin,? Philippe Rabiller,*?
Claude Ecolivet,? Eric Collet,™? Philippe Bourges,® Garry ]J. McIntyre,*
Mark D. Hollingsworth,”> Tomasz Breczewski®

SCIENCE VOL 319 4 JANUARY 2008

Neutron Counts

New diffraction peaks




Simple model: soft optic mode

F = Z (Au%/Z + ui/ll + Bupty—e + Cuptiy,—9. + Du.nu.n_a)

T

w? = A+ 2B cos(z) + 2C cos(2z) + 2D cos(x)

Parameters with A, B, C and D are temperature dependent
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Phase transition in a
crystallographic superspace

( B. Toudic et al., Science 319, 69, 2008)

Nonadecane-urea: y = 0.42

-1 0 |

T=140K

e. “’e " Structure line B+

Chmt

Superstructure line

‘. Structure line
w

X-ray Cu Ka

No common $uperstructure
h k;-O 0)




phase Il phase 111

I Orthorhombic
a7‘<’ 2b7‘<’ C*, YC*’ b*k_|_6c~k

III a;‘c, b;‘c, C7'< !YC*! b7'<_|_6C7'<

(ambient pressure)

D10 - ILL
P=0.5GPa
T= 80K

Phase IV IV Scan along c*:

sattelites at 120mim>

and 121mimp, no main
reflections 12000 or 12100

o
~—

Neutron counts

(high pressure)




Temperature (K)

0?1 072 0?3 0?4 0?5

Pressure (GPa)
FIG. 1: Phase diagram (P,T) of the fully deuterated non-
adecane urea, as determined by neutron diffraction. All the
phases (I, II, III, IV) require a description within a crys-
tallographic superspace. The dashed region indicates the
metastable region, between the low-pressure phases (phases
IT and III) and the ordered high-pressure phase (phase IV).
The insert in the high symmetry phase (phase I) illustrates
the hexagonal symmetry. Color corresponds to the fourth
variable defined along the internal dimension of the crystallo-
graphic superspace.

p-T phase diagram

nona-decane urea

Bertrand Toudic et al.
(submitted)

| hexagonal, rank = 4

Il orthorhombic rank = 4
lll orthorhombic rank = 5
IV orthorhombic rank = 5

[1I-1V first-order
phases with the same

SSG?




g > ey X Pouget, Shirane et al.

e e
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Figure 3. A stereoscopic view of the unit cell of HgyAsF4 showing the disordered model for the Hg chains. Each Hg position is only partially
occupied. The thermal ellipsoids are scaled to 50% probability. It should be noted that the mercury chains are not required crystallographically
to be linear, such that a slight buckling of the chains is observed, with a maximum deviation from the chain axis of 0.07 (1) A.

Phase transition at 120K
Subsystem 1: AsFs ; Subsystems 2,3: Hg chains
k=h1(0,1,1)+h2(1,0,1)+h3(1,1,0)+h4(3,0,0)+hs(5,-0,0)
1 000
Z'={0 1 0
0 0 1

2 1 1 2 1
0 0 0}, Z3 = 1 0
1 1 0 0 1

0
0

Superspace group : basic structure Fddd(050)00s
rank 5: Fddd(50-6,0060)00n 77
(JJ, Acta Cryst. 1980))




Quasicrystals and tilings




; Avignon 1995



Quasicrystals

Aperiodic
Local structure with clusters

Possibly, but not necessarily, non-crystallographic symmetry

As model: tiling.

*

a4

Example: Ammann-Beenker tiling:

Diffraction h;aj + hoaj + hzaj + hyaj

<

*

as
A

\4

Basis Embedding in 4D (a},a}), (a3,a}), (a3, —a3)(ai,a3)

¥* : (1,0,1,0), (a,a,—a,a), (0,1,0,—-1), (—a,a,a,a) with a =

4D lattice: X = dual of X*.

1

5"




4, five-fold symmetry
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Quasicrystals in nD superspaces
(n-3)D atomic surfaces in nD unit cell

Phase transitions:
-Phason strain, lower rank

-Commensurate modulation, same symmetry
-Commensurate modulation, lower symmetry
-Incommensurate modulation, higher rank
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Quasicrystals
1. Phason strain

eI
|

Syl vv e lve oy
|

>0 oW

svRiev v Rlov e vy

Embedding gives n-dimensional
lattice periodic structure, with
lattice characterised by the metric
tensor ¢

SO>I

—
SN—

|
™o
_|_

S

Tensor elements: scalar products
of pairs of basis vectors.

gij= ai. 3

Example: 6D lattice corresponding
to icosahedral standard tiling.




Approximant: periodic structure, locally similar to

the quasicrystal. The embedding of the former is obtained
from the latter by a ‘phason strain’.

In the transition the point group changes from 532 to 23.

Group 532
E 5 5
1 1 1
3 -1 147
3
4
5

147 —7
—1 -1
0 0 ~1

Order parameter is the 6D strain (phason strain).
This transforms with an irrep of 532 (icosahedral).
The lowest energy structure has symmetry 23 (tetrahedral).




1. Through phason strain:
transition to lower symmetry

Change of the metric tensor: ¢ =

/
Incommensurate rank 6 ¢

or A = 24+ ® +c%(1+ L?/N?))a?
commensurate rank 3: B = (®+(1— L[2/N?))a?

approximant
C' = (® —c*L/N)a?

2. Through phason modulation:
transition to higher rank

Symmetry change:

P532(5%32)x E®* ——>P532(5232,532,5232)(:00000)

Order parameter ~ 7M(aai)




Commensurate modulation, same rank
same symmetry

V = Y Vallri,ril) + X Y Va(lri —rj, |rj — il |7 — 7, dijie)

ij ijk

V5 2-particle interaction, depending on interparticle distance.
V3 anisotropic interaction

A interaction parameter
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Symmetry change in superspace

1.

Projection Voronoi cell=
fundamental region of the 4D
octagonal lattice

on perp space P8mm(8mm)

Fundamental regions of the
2D space group pgg

what are aperiodic tilings

with non-symmorphic symmetry
(space group not a semidirect
product)?



Superspace group
Extension Z" -> G -> K, with Kan nD point group.
Infinite G-orbit of point X

Fundamental region: set of points closer to x than
to any other point of the G-orbit of x

Atomic surface: copy of the projection of the f.r. onto
Internal space V, placed in x

Sum of the projections of f.r. in all points of the G-orbit
Inside the Delone cell of the lattice gives the atomic
surface corresponding to this Delone cell.




Symmetry change in superspace

2.

Projection fundamental region of space group P8um(8mm)

on internal space V.
This may be used as atomic surface to produce a decorated tiling

with PBum(8mm) symmetry.
In contrast to the usual projection of the Delone cell, this
atomic surface does not have the point group symmetry of the lattice: 8mm




1

1

P8um(8mm)

Projection of the 8 fundamental 4D
regions on V, fill the projection of
the Delone cell of the lattice



Double tiling with

Result: :
nonsymmorphic superspace group

- Y
@
G oo o

s

o
s

p8um(8mm) p8um(8mm)

1/4,1/4,3/4,3/4 3/4,3/4,1/4,1/4




Generators octagonal lattice in 4D

(0,0,6,0),  (ay/1/2,ay/1/2,—¢\/1/2,¢y/1/2,
(0,a,0,—¢c),  (—ay/1/2,a\/1/2,¢\/1/2,¢,/1/2

Metric tensor

(a® - )y/1/2 0 (—a? +¢)y/1/2 )

a?® + c? (az—c"’)\/l/72 0

(a® — ¢*)\/1/2 a®+ ¢ (a2 -&)f
(—a2+cz)\/1/72 0 (a? —cz)\/m a? + ¢

Generators of the nonsymmorphic superspace group p8um(8mm)

Elements
symmetry group




Transition
from qp p8mm tiling
to approximant 2/3

Blue thin lines: gp tiling
Red thin lines: approximant
Red thick line: unit cell

Transition via phason flips

Example of transition quasicrystal -> approximant




Transition with LLandau theory

Deformed 6D lattice with basis vectors

dl — (0 ur 0)1 y — 150 dli — (_’) 0 0)1
(_[,_1 — (0 (). 7'])] . —, r (l(; — (_7] O 0)1

n=L/N—rT

So, there 15 a lattice deformation of phason type which produces from the
icosahedral lattice a periodic system in Vg with tetrahedral point group
symmetry

The transition from the icosahedral to the tetrahedral phase can be considered

as a soft phason, as appears also in, e.g., TTF-TCNQ [4]. Cf. Ishii [5].




Free Energy: F=An?/2+ Bn*/4 + Cn°/6

n= naar*)

Free Energy: to get the minimum at 1-t ‘lock-1n’
terms are needed.

First order phase transition




Ec. compared with Egc

There are tiling models with decoration and interatomic
interaction, with a stable quasicrystal configuration.
The energy might be a polynomial in the n-dimensional
order parameter, with lock-in terms:

anh __ L \
E; Ek‘iEtetrahedron (I'A(kl =+ k‘Z + k:i,

(

anh
E _ Zkgeicosahmlron [)A(kl + k2 + kii)

qc

Entropy: S, compared with Sqc
More microstates may be reached by phason fluctuations
in quasicrystal (projection dense on Vi) than for
crystal approximant: Sqc > Sc e F=E-ST

qc

Ground state: depends on interatomic E
interactions. It must be determined by C
realistic (not phenomenological)

calculations: cf. Widom & Mihalkovic.

Calculations in the RTM are not

sufficient proof.




Incommensurate magnetic structures
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Incommensurate magnetic structure TbGes
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11. The modulated magnetic structure of the FeB-type DySi compound at 16 K assuming a coherent superposition of the refined g2= (0, 1/2,
1/6) and gs= (0, qy, g:) Fourier coefficients for the Dy1 atom for a large number of cells (4b x 15c). The horizontal axis is a, while ¢ runs out
of the plane. The moment amplitude changes in length and direction in the plane of the wave vector mainly along the c direction

12. The sine wave modulated magnetic structure of the FeB-type DySi compound at 25 K described exclusively by gz= (0, gy, g.) for the four Dy
atoms in the cell for (2b x 7¢) cells. The different colours of the moments pertain to two different orbits. The amplitude of the sine wave
changes in length in the plane of the wave vector mainly along the c. The horizontal axis is a, while ¢ runs out of the plane.




Magnetic symmetry

More general &g
for nonlinear polarisation

Fig. 2. Two-dimensional y—¢ section of the four-dimensional embed-
ding of ErFesGe;. Contourplot of the value of the spin at the position



Magnetic scattering unpolarised neutrons:

o(k) = [P — [Pk

P(k) = rov)_ fi(k) Sp;exp(ik.(n +r;))

nj
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Below Tc mixture of phases ;
transition from commensurate to incommensurate structure




Magnetic superspace group

The superspace group element
{(RE,Br) | (VE,vI)}

transforms the embedding of

S(n +r;) ZS ) expli(q.(n + r;)]

l.e. the 4D spin dlstrlbutlon

S(n+r,,t) ZS Jexpli(q.(n +1;) + iqrt]




Magnetic superspace group

The superspace group element
{(RE: RI) | (VEa VI)}

transforms the embedding of

S(n +r;) ZS ) expli(q.(n + r;)]

l.e. the 4D spin dlstrlbutlon

S(n+r,,t) ZS Jexpli(q.(n+r;) + iqrt]

to

Det(Rg) x RgS(Rz' (n+r;) — R~ 'vg), R;'t — R;'vy)
and the time reversal T to
TS(n+r;,t) = —S(n+r,t)

Magnetic superspace group consists of all elements {RIt}
and {RIt}T leaving S(r,t) invariant




Space group

Add time reversal T:
Magnetic space group

Add time shifts:

Magnetic space-time group

Is actually a

(3+1)D superspace group

Generalize internal dimension:
(3+d)D superspace group
Add time reversal T:

Magnetic superspace group




There Is a rich variety of phase transitions involving
guasiperiodic structures.

A unified approach to these transitions is by using
Landau theory, where the symmetry groups are
superspace groups or direct products of a (super)space

group en the Euclidean group E™in m dimensions.

Phase transitions may occur between phases of the
same rank, or between phases of different rank. Examples
have been found in experiments.

For each n-dimensional superspace group G a (decorated)
G-invariant tiling may be constructed, with the projections
of the fundamental regions as atomic surfaces.




Why is the phason always overdamped?

Is the discommensuration (or lock-in) transition
a real phase transition?

Is the quasicrystal state possibly the ground state (T=0)?

How do the phason fluctuations contribute to
the thermodynamical properties? l.e. how to
count these states?




