
Phase Transitions in Aperiodic Crystals
and Tilings

Ted Janssen
Theoretical Physics

University of Nijmegen
Nijmegen,  The Netherlands

Description of Phase Transitions
Superspace Description
Modulated Phases
Incommensurate Composites
Quasicrystals
Magnetic Symmetry Changes

School ‘Aperiodic Crystals’
Carqueiranne 2010



Phase transitions in commensurate and
incommensurate crystals

Modulated crystals

Incommensurate composites

Quasicrystals and tilings

Incommensurate magnetic structures



Phase diagrams
simple or complex

occur also in solids:
magnetism
structure
incommensurate phases



Aperiodic Crystal:  diffraction pattern with delta peaks

Rank n > Dimension D
Examples: Incommensurate modulated phases
                  Aperiodic composites
                  Quasicrystals

hi  integers



Aperiodic Crystal:  diffraction pattern with delta peaks

Rank n > Dimension D
Examples: Incommensurate modulated phases
                  Aperiodic composites
                  Quasicrystals

Phase transitions:  
From periodic crystal to incommensurate modulated phase, 
between incommensurate phases,
between various phases of aperiodic composites,
in quasicrystals and between quasicrystals and approximants

hi  integers



η

η

Tc

Tc T0 T
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Minimization of the Free Energy  F ( T, η )

Second order

First 
order

Group-subgroup Phase Transitions

Order parameter η  describes deviation of order in HT phase



Landau theory

Order parameter η describes change in structure / symmetry

Landau free energy

Free energy is invariant under high-symmetry group G0 ; order parameter

belongs to irreducible representation of  this group;  order parameter is 
invariant under low-symmetry group G.

7

+ ...



Landau theory

Order parameter η describes change in structure / symmetry

Landau free energy

Free energy is invariant under high-symmetry group G0 ; order parameter

belongs to irreducible representation of  this group;  order parameter is 
invariant under low-symmetry group G.

In general, higher-dimensional order parameter if  dimension of  the 
irreducible
representation is higher than 1.
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Transition from periodic to aperiodic crystal:
characterised by irrep of  the 3D space group
labelled by star of  k vectors and irrep of  the little group of  k

Example: from a crystal with space 
group Pcma towards a  modulated 
phase with wave vector

Point group of  the little group: 2mm
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P.M. de Wolff



Incommensurate modulated phases
Positions 1D system:   n + rj + fj (q.n )

Transition from unmodulated to incommensurate modulated.

Modulation functions f  may be smooth or discontinuous:
the type changes at the discommensuration transition: effects on the dynamics

Usually the wave vector of the modulation changes with temperature,
but the superspace group symmetry remains the same. Even for commensurate 
values. Then the 3D space group is determined by the SSG.

Exceptions: - when the modulation changes character;
                 -  when more wave vectors are involved ; e.g. 1q -> 2q
Then a phase transition occurs

High temperature:
Unmodulated crystal.
Positions:  n + rj



K2SeO4

T

Lock-in
commensurate
rank=3

Modulated
incommensurate
rank=4

High symmetry
rank =3

1st order 2nd order
 Discomm.



Embedding into superspace
with dimension equal to the rank 



Embedding into superspace
with dimension equal to the rank 

High symmetry: without modulation

Low symmetry: with modulation

H  subgroup of  G  :  n -dimensional space 
group: superspace group



VE

VI

Transition from 1D periodic to 1D aperiodic = 2D periodic
Symmetry from G0×E1 ->  G

Phys. Space

Red Blue
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Rank is 2              Diffraction h1 a* + h2 q



VI

VE

Transition from 2D periodic to 2D periodic

Rank remains 2              Diffraction h1 a* + h2 q/2
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Semi-microscopic models explain essentials of  the transition

Discrete frustrated φ4  model:

Phases:    para-phase    un =0
                commensurate superstructure
                incommensurate modulated phase

18

Studied with J.A. Tjon, A. Rubtsov
and V. Savkin

1st neighbour
2nd neighbour



Phase Diagram of  DIFFOUR model
(discrete frustrated φ4 model)
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T

p  or  c

Lifshitz  point
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Typical phase diagram:   high T :              space group symmetric
                                         below critical T: incommensurate phase
                                                plane wave limit (continuous modulation)
                                                discommensuration limit (discontinuous)
                                         below lock-in T: commensurate

A/D in the model corresponds to T in mean field phase diagram

T

Lock-in
commensurate
rank=3

Modulated
incommensurate
rank=4

High symmetry
rank =3

1st order 2nd order
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Discommensuration Transition in DIFFOUR model

"a"
"b"
"c"

xn versus xn-1
a   low-T commensurate, 6-fold
b   incommensurate, smooth
c   incommensurate, discommensurations



Example of  a transition from a 2D periodic 
to a 2D aperiodic (3D periodic) system:

soft mode at the zone boundary at (α, 1/2)
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Phase transition: rank 2 (periodic) to rank 3 (aperiodic)



(0,0) (π,0)

(0,π)
A

A =(6/17,1/2)



A

C

B

T2  < T <  T1 T <  T2

Free energy  on the Brillouin Zone

T > T1 :  Unmodulated : A
T1       :  Phase transition to 1q state ->   rank 4 :B
T2       :  Phase transition to 2q state ->   rank 5 :C

Phase transition 1q-2q
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Biphenyl and BaMnF4

Cf.  K. Parlinski (19920
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Composites

Embedding of the composite
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If sum reflections are present: each subsystem
is modulated by the other one.

Diffraction peaks



Aperiodic Composites by Self-hosting:
 Host and guest are made from the same pure element.
Nelmes, McMahon Phys. Rev. Lett. 83, 4081 (1999)



Embedding of  composite with continuous modulation.

Four types of  reflections: common to the subsystems, belonging to one
of  the subsystems, combinations of  reflections of  both .29

Discommensuration  transition: symmetry the same



Embedding of  composite with discontinuous modulation.

Example of  a symmetry preserving phase transition with weak
anomaly in the spec. heat, and consequences for dynamics.
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2D composite
of  rank 4

2D Example



Phase transition between phases of  the same rank

Example: rank = 3
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In superspace doubling of  the unit cell.
Changes in the diffraction affect main 
reflections of  one system only.



Change of  the rank in the transition

Model example
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In superspace additional dimension.
Changes in the diffraction affect sum peaks.
Example:  urea-nonadecane (Toudic)



 

High Symmetry Phase :
hexagonal

P6122

Orientational Disorder
of the alkanes

Low Symmetry Phase : 
orthorhombique

P212121

Anti-ferro shearing of urea
Anti-ferro ordering of the alkanes

Study of the phase transition at 3 dimensions

Single Crystal

nonadecane – urea

C19D40 – CO(ND2)2

Å Å



Å Å

 Qhklm = h a* + k b* + l c1* + m c2*

R. Lefort et al. Phys. Rev. Lett. 77, 19 (1996);    T. Weber (1996)

Single Crystal

nonadecane – urea

C19D40 – CO(ND2)2

Curea = 11.02 Å 

Cnonadecane = 26.46 Å

G43

LLB (Saclay)

ki = 2.662 Å-1
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γ ≅ 0.42

γ

(h=2, k=0)

Diffraction Image of a Composite Aperiodic Crystal (Rank 4)



New diffraction peaks



Simple model:  soft optic mode

Parameters with A, B, C and D are temperature dependent



Wavevector
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Soft Mode

Coupling
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Trois axes
Neutrons froids

b*

(1 2 c*)

(1 –2 c*)

(1 0 c*)

(1 –4 c*)

(1 4 c*)

cu*

Phase II

1 2 3 40

Rayons X Cu C
*

X-ray Mo

Cold Neutrons
4F LLB

X-ray Cu Kα

T=140K

-1     -γ    0     γ     +1

(T>Tc)

Structure line

Structure line 

Superstructure line

Phase transition in a 
crystallographic superspace

( B. Toudic et al., Science 319, 69, 2008)

No common superstructure
 h k 0 0

+/-  δ Cu
*

 

Nonadecane-urea: γ ≅ 0.42



II   Orthorhombic 
a*, 2b*, c*, γc*, b*+δc*

III a*, b*, c* ,γc*, b*+δc*

(ambient pressure)

IV Scan along c*:
sattelites at 120m1m2

and 121m1m2, no main 
reflections 12000 or 12100

(high pressure)



p-T phase diagram

nona-decane urea

Bertrand Toudic et al.
(submitted)

I  hexagonal, rank = 4
II orthorhombic rank = 4
III orthorhombic rank = 5
IV orthorhombic rank = 5

III-IV first-order
phases with the same 
SSG?



Hg3-δAsF6

Phase transition at 120K
Subsystem 1: AsF6 ; Subsystems 2,3: Hg chains
k=h1(0,1,1)+h2(1,0,1)+h3(1,1,0)+h4(δ,δ,0)+h5(δ,-δ,0)

Superspace group :   basic structure Fddd(0δ0)00s
                               rank 5:             Fddd(δ0-δ,0δ0)00n 
                               (JJ, Acta Cryst. 1980))

Pouget, Shirane et al. 
Phys.Rev.1978)

??
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John Cahn, Danny Shechtman, Ilan Blech and
Denis Gratias,  Avignon 1995



Quasicrystals

Aperiodic
Local structure with clusters
Possibly, but not necessarily, non-crystallographic symmetry

As model: tiling.

Example: Ammann-Beenker tiling: a1
*

a2
*

a3
*

a4
*

)(



Penrose tiling,  dimension = 2,  rank = 4, five-fold symmetry





Quasicrystals in nD superspaces

(n-3)D atomic surfaces in nD unit cell

Phase transitions:
-Phason strain, lower rank
-Commensurate modulation, same symmetry
-Commensurate modulation, lower symmetry
-Incommensurate modulation, higher rank



Quasicrystals
1. Phason strain

Embedding gives n-dimensional
lattice periodic structure, with 
lattice characterised by the metric 
tensor  g

Tensor elements: scalar products 
of pairs of basis vectors.

Example: 6D lattice corresponding
to icosahedral standard tiling.

gij =  ai . aj 



Order parameter is the 6D strain (phason strain).
This transforms with an irrep of 532 (icosahedral).
The lowest energy structure has symmetry 23 (tetrahedral).

Approximant: periodic structure, locally similar to
the quasicrystal.  The embedding of the former is obtained
from the latter by a ‘phason strain’.
In the transition the point group changes from 532 to 23.



Change of the metric tensor:

Symmetry change:

Order parameter

1. Through phason strain:
transition to lower symmetry

2. Through phason modulation:
transition to higher rank

Incommensurate rank 6
or
commensurate rank 3:
approximant



Commensurate modulation, same rank
                                                    same symmetry
                   





Same superspace group!



8mm(8mm)P
8mm(8mm)I≈
8mm(8mm)P

H=(h,k,l,m)/2
h+k+l+m=even

Centering 
transition



Projection Voronoi cell=
fundamental region of the 4D
octagonal lattice
on perp space P8mm(8mm)

Fundamental regions of the
2D space group pgg

what are aperiodic tilings
with non-symmorphic symmetry
(space group not a semidirect 
 product)?

 Symmetry change in superspace

 1.



Superspace group

Extension    Zn   ->  G  ->  K,    with K an nD point group.

Infinite G-orbit of point x  

Fundamental region:  set of points closer to x than
to any other point of the G-orbit of x

Atomic surface: copy of the projection of the f.r. onto
internal space VI  placed in x

Sum of the projections of f.r. in all points of the G-orbit
inside the Delone cell of the lattice gives the atomic
surface corresponding to this Delone cell.



Projection fundamental region of space group P8um(8mm)
on internal space  VI .
This may be used as atomic surface to produce a decorated tiling
with P8um(8mm) symmetry.
In contrast to the usual projection of the Delone cell, this
atomic surface does not have the point group symmetry of the lattice: 8mm

 Symmetry change in superspace

 2.



P8um(8mm)

Projection of the 8 fundamental 4D
regions on VI fill the projection of
the Delone cell of the lattice



p8um(8mm)

1/4,1/4,3/4,3/4

p8um(8mm)

3/4,3/4,1/4,1/4

Double tiling with 
nonsymmorphic  superspace groupResult:



Elements
symmetry group



Transition
from qp p8mm tiling
to approximant 2/3

Blue thin lines: qp tiling
Red thin lines: approximant
Red thick line: unit cell

Transition via phason flips

Example of transition quasicrystal -> approximant



Deformed 6D lattice with basis vectors
Transition with Landau theory

64

So, there is a lattice deformation of  phason type which produces from the 
icosahedral lattice a periodic system in VE with tetrahedral point group 
symmetry 

The transition from the icosahedral to the tetrahedral phase can be considered 
as a soft phason, as appears also in, e.g., TTF-TCNQ [4]. Cf. Ishii [5].



Free Energy: F = A η2 /2 +  B η4 /4  +  C η6 /6

First order phase transition

η =  η(α a1* )

η

F

65

1-τ

Free Energy: to get the minimum at 1-τ ‘lock-in’ 
terms are needed.



Energy:   Ec  compared  with  Eqc

There are tiling models with decoration and interatomic
interaction, with a stable quasicrystal configuration.
The energy might be a polynomial in the n-dimensional
order parameter, with lock-in terms:

Entropy:   Sc  compared  with  Sqc

More microstates may be reached by phason fluctuations
in quasicrystal (projection dense on VI) than for 
crystal approximant:  Sqc > Sc F=E-ST

T

Eqc

Ec

PT

Ground state: depends on interatomic
interactions. It must be determined by
realistic (not phenomenological) 
calculations:  cf. Widom & Mihalkovic.
 Calculations in the RTM are not
sufficient proof. 
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Commensurate magnetic structure DySi   
(P. Schobinger-Pappamantellos)



Incommensurate magnetic structure TbGe3



11. The modulated magnetic structure of the FeB-type DySi compound at 16 K assuming a coherent superposition of the refined q2 = (0, 1/2, 
1/6) and q3= (0, qy, qz) Fourier coefficients for the Dy1 atom for a large number of cells (4b x 15c). The horizontal axis is a, while c runs out 
of the plane. The moment amplitude changes in length and direction in the plane of the wave vector mainly along the c direction

12. The sine wave modulated magnetic structure of the FeB-type DySi compound at 25 K described exclusively by q3= (0, qy, qz) for the four Dy 
atoms in the cell for (2b x 7c) cells. The different  colours of the moments pertain to two different  orbits. The amplitude of the sine wave 
changes in length in the plane of the wave vector mainly along the c. The horizontal axis is a, while c runs out of the plane.



Text

Magnetic symmetry

More general  Φαj
for nonlinear polarisation





Below Tc mixture of phases ; 
transition from commensurate to incommensurate structure



Magnetic superspace group

transforms the embedding of

i.e. the 4D spin distribution

The superspace group element



Magnetic superspace group

transforms the embedding of

i.e. the 4D spin distribution

The superspace group element

to

and the time reversal T to

Magnetic superspace group consists of all elements {R|t} 
and {R|t}T leaving S(r,t) invariant



Magnetic space group

Space group

Magnetic space-time group

(3+1)D superspace group

Magnetic superspace group

Add time reversal T:

Add time shifts:

is actually a

Add time reversal T:

Generalize internal dimension:

(3+d)D superspace group



Conclusions

There is a rich variety of phase transitions involving
quasiperiodic structures.

A unified approach to these transitions is by using
Landau theory, where the symmetry groups are
superspace groups or direct products of a (super)space
group en the Euclidean group Em in m dimensions.

Phase transitions may occur between phases of the
same rank, or between phases of different rank. Examples
have been found in experiments.

For each n-dimensional superspace group G a (decorated)
G-invariant tiling may be constructed, with the projections
of the fundamental regions as atomic surfaces. 



Open questions

Why is the phason always overdamped?

Is the discommensuration (or lock-in) transition
a real phase transition?

Is the quasicrystal state  possibly the ground state (T=0)?

How do the phason fluctuations contribute to
the thermodynamical properties? I.e. how to
count these states?


