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•  All types of materials 
–  Minerals 
–  Metals, alloys 
–  Insulators 
–  Inorganic Material 
–  Organic materials 

•   In all types of conditions: 
    - Some temperature interval or at all temperatures up to melting 
      - Some pressure interval…. 
   - at about 0K or at high temperatures …. 

Materials that are periodic crystals:  



Incommensurate Modulated Structures - origin 
K2SeO4 -    (A2BX4) 

Unstable mode  

temperature dependent  
soft-phonon branch: 

Iizumi et al. Phys. Rev. B (1977) 

Steric mechanism 
calculation varying the “size” of K:  



Incommensurate Modulated Structures - origin 

“Competing interactions”   ANNNI Model 
(Axial next nearest neighbour Ising model) 

J1 

J2 

ΔE= -J. Si.Sj 

“fustration” 

a 

J1>0, J2<0  



Van Smaalen, Acta Cryst. (2005) 

Incommensurate Modulated Structures - origin 

Charge density waves (CDW) 
Peierls mechanism 

Fermi surface nesting: 

Transition metal-insulator 



INCOMMENSURATE STRUCTURES AS RESULT OF A PHASE TRANSITION: 

Ti TL 

k 

kL 

ki 

Press et al.  1980 

Example: K2SeO4 

wave vector T-dependence 

Parent phase INC phase  Lock-in phase 
Ti TL 

Simplest scenario 



(CH3)3NCH2-COOCaC12.2H20    (BCCD) 

wave vector T-dependence 

Phase diagram with pressure 

Phase diagram with electric field 

Le Maire et al. 1999 

Kappler et al. 1993 

INCOMMENSURATE STRUCTURES AS RESULT OF A PHASE TRANSITION: 

wave vector T-dependence 

Kiat et al. 1997 

More complex situations:  



distortion = Amplitude * polarization vector 

e2 

e3 

e4 

e1 

 u(atoms) = Q  e  

polarization vector amplitude 

e =  ( e1 ,e2 ,e3 ,e4 ) 

Description of a displacive “mode”:  

normalization:  |e1|2 + |e2|2 + |e3|2 + 2 |e4|2 =1 
(within a unit cell) 

Phenomenological description of a structural phase transition – Landau Theory 

primary distortion mode : order parameter = collective coordinate 



Phenomenological description of a structural phase transition – Landau Theory 

primary distortion mode : order parameter 

Unstable collective degree of freedom: 

T>Tc 

T<Tc 

F. Energy 

Q 

E = Eo + 1/2 κ(T) Q + … 2 

κ(T)<0    T <Tc 

distortion modes:  

displacive type: local variable =atomic displacements 

order-disorder type: local variable: site occupation probabilities 

magnetic type: local variable: atomic magnetic moments 



e2 

e3 

e4 

e1 

Energy 

Q 

Multistability: 

Q >0 Q<0 



A mutidimensional energy map: 

x1 

x2 

G 

F 

F' 

F'' 

•  Energy is extremal (maximum or minimum for symmetry breaking distortions) 

•  Taylor expansion of the energy (restricted by symmetry) : 

(x1, x2) 

½  κ2 x2  + E = Eo + ½  κ1 x1 + 2 2  γ x1 x2 + .... 2 2 β1 x1  + 4 β2 x2  + 4

invariants for all symmetry operations of G 



η1 

η2 

G 

F 

F' 

F' 

•  Multistability : energetically equivalent configurations/domains – switching properties  

•  Energy is extremal (maximum or minimum for symmetry breaking distortions) 

•  Taylor expansion of the energy (restricted by symmetry) : 

) + E = Eo +  ½ κ (η1 +η2 
2 ¼ β (η1  + η2 ) 4 4

invariants for all symmetry operations of G 

The Landau potential: a temperature dependent (free) energy map 

2dim order parameter 

Q = (η1 , η2)   

2 + γ η2 η2  2 2

To 

κ	


κ = a(T-To) 

T κ <0 

collective coordinate 



Irreducible 
representation 
of G (irrep) 
(matrices) 

Symmetry break in a commensurate-commensurate 
transition 

Order parameter  Q = (η1, η2) = ρ (a1,a2)  

group-subgroup relation: 

G              F 

η1 

η2 

High symmetry Low symmetry 
F: isotropy subgroup 

a1
2+a2

2 =1 

High symmetry group G =  {g} 

Key concept  of Landau Theory: 
It defines the symmetry break  

g belongs to F 

  T(g) Q =  Q  

g does not belong to F: Q’ equivalent  
but distinguishable state  

T(g) Q =  Q’ ≠ Q 

amplitude 



Unstable modes in the description of the energy at 0K of a parent phase 
(ab-initio calculations): 

E = Eo + 1/2 Σκj(k) |Qi(k)|    + … 
Normal (static) coordinates 

stiffness coefficients 

Energy around the high-symmetry non-distorted configuration:  

2 

κj(k) 

k 

κj(k)<0 

Energy as a function of the 
amplitude of an unstable Q: 

E 
κ <0 

Q 

Ab-initio calculation of static  
normal modes in the high-symmetry 
configuration 

Symmetry of distortion modes: irreducible representations (group theory) 



Etxebarria et al. 1992 

Thermal stabilization of unstable phonon branches 

Landau assumption: κ(ko, T) = a(T-To)  



Bernard et al. 1983 

Iizumi et al.  1977 ThBr4 

Soft-modes leading to incommensurate phases 

K2SeO4 

Hlinka et al. 1996 

ThBr4 

BCCD 



η1 

η2 

G F' 

F 

•  Taylor expansion of the energy (restricted by symmetry) : 

+ E = Eo +  ½ κ Qk Q-k ¼ β1 Qk Q-k 
2

invariance for all symmetry operations of G: 

Landau potential (T<Tc) of  a commensurate  structure with triplicated cell 

2d order parameter (Qk , Q-k) = (η1 , η2)  

Qk = ρ e i θ	

 η1 =ρ Cos(θ) 
η2 =ρ Sin(θ) 

2
+ 1/6 γ1 Qk Q-k 

3 3
+ 1/6 γ2 (Qk + Q-k) 6 6

kL= 1/3 c* 

 (Qk + Q-k) –  Σ k = r. lattice v. but not invariant for all G 33

 (Qk - Q-k) – not invariant 3 3

G              F (c'=3c) 

u(atom,l)= Qk e(atom) exp[ikL.l] + Q-k e*(atom) exp[-ikL.l]  

Qk = Q*-k
	



+ E = Eo +  ½ κ ρ2 ¼ β1 ρ4 + 1/6 γ1 ρ6 + 1/6 γ2 ρ6Cos(6θ) 

umklapp term 



η1 

η2 

G F' 

F 

The Landau potential: a transition to a commensurate  structure with triplicated cell 

Qk = ρ e i θ	



kL= 1/3 c* G            F (c'=3c) 

+ E = Eo +  ½ κ ρ2 ¼ β1 ρ4 + 1/6 γ1 ρ6 + 1/6 γ2 ρ6Cos(6θ) 

Number of energetic equivalent  
configurations (domains): 6 

In general, number of domains: 

superlattice factor*reduction 
factor of point group = 3*2  

u(atom,l)= Qk e(atom) exp[ikL.l] + Q-k e*(atom) exp[-ikL.l]  



η1 

η2 

G 

•  Taylor expansion of the energy (restricted by symmetry) : 

+ E = Eo +  ½ κ Qk Q-k ¼ β1 Qk Q-k 
2

The Landau potential for a transition into an incommensurate  structure 

2d order parameter (Qk , Q-k) = (η1 , η2)  

Qk = ρ e i θ	

 η1 =ρ Cos(θ) 
η2 =ρ Sin(θ) 

2
+ 1/6 γ1 Qk Q-k 

3 3
+ 1/6 γ2 (Qk + Q-k) 6 6

ki ≈1/3 c* G            F (c'≈3c) 

u(atom,l)= Qk e(atom) exp[iki.l] + Q-k e*(atom) exp[-iki.l]  

Qk = Q*-k
	



+ E = Eo +  ½ κ ρ2 ¼ β1 ρ4 + 1/6 γ1 ρ6 + 1/6 γ2 ρ6Cos(6θ) 

Σ k can never be a non-zero reciprocal lattice vector !  



η1 

η2 

G 

The Landau potential for a transition into an incommensurate  structure 

2d order parameter (Qk , Q-k) Qk = ρ e i θ	



k ≈1/3 c* G            F (c'≈3c) 

u(atom,l)= Qk e(atom) exp[ik.l] + Q-k e*(atom) exp[-ik.l]  

+ E = Eo +  ½ κ ρ2 ¼ β1 ρ4 + 1/6 γ1 ρ6 

Number of energetic equivalent  
configurations (domains): infinite ! 

Energy is invariant for a change 
of the phase of the order 
parameter: PHASONS 



   Symmetry break        Phase Transition 

A symmetry property in a solid is NOT ONLY a certain geometric or 
transformation condition. 

A well defined symmetry operation in a thermodynamic 
system must be maintained when scalar fields (temperature, pressure,…) are 
changed (except if a phase transition takes place). 

The break of a symmetry condition (without external fields) necessarily implies a 
thermodynamic phase transition. 

Symmetry and Physics 

a=b=c 
a = c 
b = 2a 

symmetry property "nice" but not a symmetry property 



A symmetry operation fullfills:  

•  the system is undistinguishable after the transformation 

•  the operation belongs to the set of transformations keeping  
the energy invariant   

Symmetry operations in commensurate crystals: 

Rotations, translations, space inversion, (time inversion)    
                 and/or their combinations: 

{ {Ri| ti}} space group: 

Symmetry in incommensurate crystals 



SUPERSPACE SYMMETRY IN INCOMMENSURATE CRYSTAL 

• An INC phase has a well defined symmetry given by a superspace group.  

no lattice       no space group Symmetry: 

BUT there are additional zero-energy transformations:  
                                arbitrary shifts of the modulation phase (phason) 

“superspace” symmetry operations: (R|t,τ)  
Roto-inversion operation 

translation phase shift 

Symmetry: superspace group = set of operations { (R|t,τ) } keeping the structure undistinguishable  

 point group = set of operations { R }  

Well defined symmetry operation:  it is maintained when scalar fields are changed, except at a 
phase transition. 
Why: because the symmetry operations are a subgroup of the continuous group of transformations 
keeping the energy, including the phason transformations. 



x3 

x4 

z 

Superspace translational symmetry: {E|T, -q.T} 
real spac. lat. translation + phase shift (internal space translation) 

“lost” real space translation translation:{E|T, 0} 

phase shift translation:{E|0, -q.T} 

(combination of transformations that keep energy invariant) 

{E|T, -q.T} 



The old story of BCCD Pnma         INC 

How to calculate the superspace group of the INC phase from the knowledge of  
the symmetry of the order parameter:  

T[(R|t)] 

Generalization of invariance equation: 

ei2πτ    0 
0         e-i2πτ	



Qk 
Q-k 

= Qk 
Q-k 

(Qk=Q-k) 

operation of Pnma phase shift order parameter: 
primary mode amplitude 

(R|t,τ) belongs to superspace group if : 

Additional term in an 
incommensurate phase 

Pnma          Pnma(0 0 γ)1s-1 

u(atom,l)= Qk e(atom) exp[iki.l] + Q-k e*(atom) exp[-iki.l]  

T[(my|0 ½ 0)] =  -1   0 
0   -1	

 (my|0 ½ 0, ½ ) 



½  κ2 Q2  + 

Example of a (free)  energy map with primary 
order parameter (Q1) and secondary 
spontaneous variable(Q2): Q2 

Q1 
E = Eo + ½  κ1 Q1 + 2 2 

 γ Q1 Q2 + 
κ1<0 κ2>0 

3 

Anharmonic allowed coupling 

Equivalent structures of the same free energy 

κ1<0 

κ2>0 

Q2 
equil. = - (γ /k2) Q1 

3 

Secondary weaker spontaneous variables 

faintness index 



Universal/ubiquituous couplings 

ρX
2 ρ2 

ρX : amplitude of distortion mode of any wave vector k 

ρ : amplitude of the order parameter distortion with a specific  
wave vector ki 

Effect: 
E = Eo +  ½ κ ρ2  +  ½ κX ρX

2 + γ ρ2 ρX
2 + … 

T<Tc  ρ = ρο – spontaneous                

E = E (ρο) +  ½ (κX + 2γ ρο2) ρX
2  + … 

κX + 2γ ρο2 : effective stiffness of  mode(s) X below Tc   

If kX + 2γ ρο2 <0  : mode(s) X also spontaneous ! 

Fortunately γ >0 in most cases, otherwise Landau theory would be of not much use ! 



General rules for secondary spontaneous variables 

G         F for a given symmetry break 

secondary spontaneous variables X: 

X ~  F(n)[Q1,…,Qn]  

Polynomial of order n (faintness index) 

energy coupling:  X.F(n)[Q1,…Qn]  

{Q1,…,Qn} – order parameter 

secondary spontaneous variables X keep the symmetry defined by  the order parameter 



The old story of BCCD 

A well defined symmetry operation in a thermodynamic system must be maintained when scalar fields are 
changed, except at a phase transition…. 

Py 

Px 

Px 

INC phase 

|q| 

Pnma        INC 

An INC phase has a well 
defined symmetry, which is 
kept by all secondary 
variables/harmonics  

Q(q)Q(q)…Q(q) Qsecond(-mq) 
Allowed energy coupling terms: Origin of infinite “spontaneous” 

 secondary harmonics  of wave vector mq mq 
The symmetry constraints for this type of 
coupling equivalent to the one coming from the 
superspace group m (∑q –mq=0) 

Q(qc)Q(qc)…Q(qc) Qsecond(-mqc) 
Number of inequivalent  mqc finite 
Their symmetry contraints given by a 
space group 

m (∑qc –mqc=G) 

In a commensurate phase: 

reciprocal lattice vector 

u(atom,cell l))= Q(q) e(atom) exp[iq.l] + Q(-q) e*(atom) exp[-iq.l]  

T 



The old story of BCCD 

Px Py 
Py 

Py 

Px 

Px 

non polar 
irrep of the primary mode (order parameter) is changing 
ONLY its wave vector with temperature: 

spontaneous polarization is changing direction with the parity 
of the wave vector 

q = n 
m c* (m-fold supercell) 

Pnma        F? 

T[g] Q =  Q  
irrep matrices depend on the wave vector q 

coupling primary mode – polarization: 

Q = (Q, Q*) 

u(atom)= Q e(atom) exp[iq.l] + Q* e*(atom) exp[-iq.l]  
primary distortion mode/wave: 

2d order parameter: 

(Qm+Q*m) Py  if n/m = even/odd 

(Qm+Q*m) Px  if n/m = odd/even 

|q| 

deuterated 

Almeida et al. 1997 

Py 

Px 

non polar 

Perez-Mato 1988 



Secondary distortions in an incommensurate phase: Anharmonic modulations 

+ E1 = Eo +  ½ κ Qk Q-k ¼ β1 Qk Q-k + 1/6 γ1 Qk Q-k 

Landau Potential – primary INC order parameter: 

Landau Potential – Secondary INC modulations – higher harmonics: 

E2 = ½ κ' Q’4k Q'-4k  + γ' (Q'-4k Qk + Q’4k Q-k) + . . .  
4 4

3ki ≈ 0 c* 

-2ki ≈ 1/3 c* 

4ki ≈ 1/3 c* 

-5ki ≈ 1/3 c* 



t 

θ(t)	


2π	



1 

Describing the anharmonicity 

Switching from Fourier space to direct space The Landau-Ginzburg free energy:  

(Qk , Q-k) (QkL (z) , Q-kL (z)) := (Q (z) , Q* (z))   
order parameter with 
T-dependent inc.  
wave vector k 

local order parameter with commensurate 
wave vector kL 

+ ... 
"lock-in term" 
ρ6Cos(6θ) 

Q(z) = ρ(z) e i θ(z) = ΣkQk e i(k-kL)z  	


kL= 1/3 c* Example: 

dispersion terms 
Lifshitz term 

Q(z) = ρ(z) e i θ(z) ≈    

Sinusoidal regime for T ≈Ti: 

ρ e iδz  
k-kL = δ	



z 

θ(z)	


2π	



2π/δ	



along internal space 

F =  1/L   f(z)dz 
L (Type I) 



Structural features within the Landau-Ginzburg approximation: 

general expression for the atomic positions in a (3+1) INC phase: 

Restricted expression for the atomic positions assuming a local order parameter 

all harmonics have same eigenvector, same symmetry ! 

Aramburu et al. 1995 

q-qL = δ	





-1/3a* 

-ki 

2ki -4ki 

 5ki -7ki 

Coupled high-harmonics within the Landau-Ginzburg approximation: 

(Q'-4k Q4
k + Q’4k Q4

-k)  
(Q'-2k Q2

k + Q’2k Q2
-k)  

(Q-5k Q5
k + Q5k Q5

-k)  
(Q-7k Q7

k + Q7k Q7
-k)  

......................... 

only with a (harder) branch   
of different symmetry! 

lowest-order coupled harmonics 
within the same branch 

Q(z) = ΣnQnk e inδz  	



spontaneous secondary  
harmonics: (6n±1) 
5, 7, 11, 13, ... 

e(k) ≈ e 
dependence on k of phonon eigenvector neglected: 

( ) 



Example Landau-Ginzburg potential for an INC phase transition 

polarization coupling 

strain coupling 

Ti TL 

k 

kL 

ki 

The system can get closer to the  
commensurate kL configuration  
in two ways: 

•  Changing the wave vector ki 

•  Changing the form the of atomic modutions 
     (soliton regime – discommensurations) 



Realization of a local  
commensurate configuration 
with discommensurations 

k =kL = 1/3 c* 

k =ki ≈ 1/3 c* 

Same configuration except for 
periodic discommensurations/domain walls 



only harmonics 6n±1 
(5, 7, 11, 13, ...) are present 

Realization of a local  
commensurate configuration 
with discommensurations in a 
more realistic case, with decrease 
of the point group 

commensurate points 
for symmetry related 
modulation functions 

k =kL = 1/3 c* 

k =ki ≈ 1/3 c* 



Ishibashi 1981 

The soliton regime is predicted by the Landau-Ginzburg potential 

Ishibashi et al. 1981 Numerical study 



The soliton regime is predicted by the Landau-Ginzburg potential 
Ishibashi et al. 1981 Numerical study 

η1 

η2 

G F' 

F 

Q(z) = ρ(z) e i θ(z)  



Phase of the order parameter and example of resulting atomic modulation 
Function (along the internal space) in a strong soliton regime for a system  
with 6 domains in the commensurate lock-in phase     

(secondary distortions/harmonics not related with the order parameter are 
not included)  



Break of analycity of a Modulated Phase 

Diffour model – Janssen 2002 

(as a function of temperature) 



Underlying soliton like  
modulations and the  
experimentally 
determined Fourier 
truncated series 

Aramburu et al. PRB 73 (2006) 

Structure of Rb2ZnCl4 in the soliton regime 



The soliton regime has been observed by different techniques: 

Fung er a1 1981 

2H-TaSe2 



Bestgen 1986 

The soliton regime has been observed by different techniques: 

Rb2ZnCl4 Tsuda et al. 1988 

Bestgen 1986 



Walisch et al. 1987 

The soliton regime has been observed by different techniques: 

NMR Rb2ZnBr4 



The soliton regime without Lifshitz invariant Zuñiga et al. Acta B 1989 

Thiourea 

Modulations of the molecular translations in the INC phase 

simulated curves experimental  

Pnma INC phase  P21ma (kL =0) 
lock-in phase 

Ti TL 

SC(NH2)2 



Aramburu et al. 1994 The soliton regime without Lifshitz invariant 

Thiourea SC(NH2)2 Type II INC systems 

Naive L-G potential 

BCCD 

Order parameter at 
the lock-in phase  
one-dimensional 



Aramburu et al. 1994 The soliton regime without Lifshitz invariant 

Thiourea SC(NH2)2 Type II INC systems 

η	



ξ	



ε	


coupling with acoustic branch: 

The eignvector of the distortion is  
strongly temperature dependent,  
in contrast with Type I 



Aramburu et al. 1994 

The soliton regime without Lifshitz invariant 

Thiourea SC(NH2)2 Type II INC systems 

NMR – Blinc et al. 2006 



BCCD under electric  field 

Le Maire et al. 1999 

Py 

Px 

non polar 

Perez-Mato 1988 

O3 

Hernandez et al. PRB 1998 



BCCD under electric  field 

Le Maire et al. 1999 

Landau potential = efective hamiltonian for the modulation functions 

local coordinate             internal coordinate  

Perez-Mato PRB 2000 



Quilichini et al 2002 BCCD under electric  field – neutron scattering  



Modulated INC structures and their phase transitions can be modelized  
with Landau potentials, that become in practice temperature  
effective hamiltonians, conveniently symmetry-adapted to specific systems 

Conclusion 


