

lodular compounds

Olivier Pérez

olivier.perez@ensicaen.fr

Disclaimer and copyright notice

Copyright 2010 Olivier Perez for this compilation.

This compilation is the collection of sheets of a presentation at the "International School on Aperiodic Crystals," 26 September – 2 October 2010 in Carqueiranne, France. Reproduction or redistribution of this compilation or parts of it are not allowed.

This compilation may contain copyrighted material. The compilation may not contain complete references to sources of materials used in it. It is the responsibility of the reader to provide proper citations, if he or she refers to material in this compilation.

Summary

- [©] What is it ? What is the aim ?
- ^{SR} Useful properties of the superspace formalism
- ^{°R} The method : keys ...
- [©] Some examples, step by step ...
- ^C Conclusion

Summary

- ⁶ What is it ? What is the aim ?
- ^{SR} Useful properties of the superspace formalism
- [°] The method : keys ...
- Some examples, step by step ...
- [©]Conclusion

Modular compounds consist of

limited number of different building blocks, forming layers stacked in the third direction

Classical periodic structures ...

Forms large families with :

- ⁰ structural similarities
- $^{\circ}$ composition, cell parameters evolving for the \neq members
- $^{\circ}$ structural complexity increasing for the \neq members
- \ll ≠ symmetries for the ≠ members

≠ sequences in the stacking direction

NaO₆ prismatic MnO₆ octahedral

environments

Aurivillius phases

stacking of Bi₂O₂ layers and perovskite layers with variable thickness

Tungsten Phosphate Bronzes $(PO_2)_4(WO_3)_{2m}$

with 4≤m≤14

m=4, P₄W₈O₃₂

m=5, P₄W₁₀O₃₈

a=5.28 **b=**6.57 **c=**17.35 P2₁2₁2₁

m=8, $P_4W_{16}O_{56}$

a=5.28 **b**=6.57 **c**=20.45 β=90.40° *P2*₁/n

a=5.29 **b**=6.57 **c**=23.55 P2₁2₁2₁

Thickness of the WO₃ slabs is function of m ...

Aim : to unify the description of the homologous series using superspace formalism

> to emphasize, to reveal common properties (symmetry, composition ...) hidden by the overlapping of sub- and super- periodicities

> to reduce the number of refinement parameters

application of superspace formalism to commensurate structures

Summary

- What is it ? What is the aim ?
- **Useful properties of the superspace formalism**
- ^{°R} The method : keys ...
- Some examples, step by step ...
- [©]Conclusion

supercrystal

 ∞ supercell :

$$A_1 = a - \sigma_1 e_4, A_2 = b - \sigma_2 e_4, A_3 = c - \sigma_3 e_4, A_4 = e_4$$

with q = $\sigma_1 a^* + \sigma_2 b^* + \sigma_3 c^*$

 $c_{\mathcal{R}}$ atomic position : $\mathbf{r} = \mathbf{x}_1 \mathbf{A}_1 + \mathbf{x}_2 \mathbf{A}_2 + \mathbf{x}_3 \mathbf{A}_3$ and \mathbf{x}_4

 $x_4 = q.(r + p)$

$$p = n_1A_1 + n_2A_2 + n_3A_3, n_i \in IN$$

supercrystal

 ∞ supercell :

$$A_1 = a - \sigma_1 e_4, A_2 = b - \sigma_2 e_4, A_3 = c - \sigma_3 e_4, A_4 = e_4$$

with q = $\sigma_1 a^* + \sigma_2 b^* + \sigma_3 c^*$

 $c_{\mathcal{R}}$ atomic position : $\mathbf{r} = \mathbf{x}_1 \mathbf{A}_1 + \mathbf{x}_2 \mathbf{A}_2 + \mathbf{x}_3 \mathbf{A}_3 + \mathbf{x}_4 \mathbf{A}_4$

 $x_4 = q.(r + p)$

 $p = n_1A_1 + n_2A_2 + n_3A_3, n_i \in IN$

 $r = r_0 + u(x_4)$

atomic displacement

two contributions

Building of the 3d structure from supercrystal ?

true crystal = section of the super crystal

true crystal (in the physical space)

physical space

(3+1)d space

√ multiple atoms

single atomic domain

physical space

(3+1)d space

√ independent atoms

single atomic domain > symmetry related atoms

2 independant atomic domains (displacements and/or vacancies)

same modulation functions

3 choices of q vector \implies 3 \neq super-cells

physical space

(3+1)d space

√ multiple atoms

 \checkmark independent atoms

single atomic domain
symmetry related atoms

, guine guie

✓ different structures ____

> 1 model + ≠ wave vectors

the problem of section choices

Incommensurate modulated structure

wave vector with at least one irrational component

all the 3d sections are equivalent

Commensurate modulated structure

wave vector with rational components

only some points of the atomic domains are physically significant

2 choices of origin = 2 different 3d structures

m mirror $x_1, \overline{x}_2, x_3, \overline{x}_4$

 \approx to 2-fold axis \perp (x₂,x₄)

2 equivalent atomic domains / super cell

International School

Aperiodic Crystals

m mirror $x_1, \overline{x}_2, x_3, \overline{x}_4$

general section

- ⇒ 1 physical point
- ⇒ equivalent point by m
- ⇒ grid of the equivalent sections
- does not belong to an equivalent section
- 2 physical positions are not equivalent by m
- m does not belong to the t0 section m does not belong to the SG of the true 3d structure

m mirror $x_1, \overline{x}_2, x_3, \overline{x}_4$

Section t₀=0

⇒ 1 physical point

⇒ equivalent point by m

- ⇒ grid of the equivalent sections
- belongs to an equivalent section
- 2 physical positions are equivalent by m
- m belongs to the t₀ section m belongs to the SG of the true 3d structure

it exists \neq 3d sections with \neq symmetries

make an inventory of the equivalents sections and symmetries

principle : 1 symmetry element S belongs to a section t₀ if two symmetry related atomic positions belong to t₀

$$S = \begin{pmatrix} R_E & 0 \\ 0 & \varepsilon \end{pmatrix} \begin{pmatrix} \tau_E \\ \tau_I \end{pmatrix}$$
 lattice translation $T + n_4 A_4 = n_1 A_1 + n_2 A_2 + n_3 A_3 + n_4 A_4$
$$x_4 \longrightarrow x'_4 = \varepsilon x_4 + \tau_I + n_4$$
$$t = x_4 - q \cdot r \longrightarrow t' = \varepsilon x_4 + \tau_I + n_4 - q [\{R_E | \tau_E\}r + T]]$$
$$t \longrightarrow t' = \varepsilon (t + q \cdot r) + \tau_I + n_4 - q [\{R_E | \tau_E\}r + T]]$$
$$t \longrightarrow t' = \varepsilon t + \tau_I + n_4 - q [\tau_E + T]$$
principle : $t = \varepsilon t + \tau_I + n_4 - q [\tau_E + T]$

series of equations

... to be applied to all the symmetry elements of the SSG

physical space

(3+1)d space

✓ multiple atoms

√ independent atoms

✓ different structures

-----> single atomic domain

> 1 model ⊕ ≠ wave vectors

✓ different 3d symmetries -

 \rightarrow $\exists \neq t$ sections of the model

Summary

- What is it ? What is the aim ?
- **Useful properties of the superspace formalism**
- ℜ The method : keys ...
- Some examples, step by step ...
- *™* Conclusion

Regular used of the superspace formalism ...

unknown structure

diffraction pattern with different types of reflections

🔍 main reflections 🛑 sub periodicity

 ∞ satellite reflections \rightarrow additional periodicity

irrationnal positions

 $s = ha^* + kb^* + \ell c^* + mq^*$

- ℜ incommensurate structure
- [∞] superspace group

structure solution of the average structure, of the super crystal and the of the true incommensurate structure

The superspace formalism for unifying a family of compounds ...

family with well known structures

- ℜ commensurate structures
- R diffraction pattern with only one class of reflections
- $^{\circ}$ sub cell common to all the members of the family ?

→ different types of reflections ?

→ sub periodicity in the 3d structure

- % wave vector related with the composition *i.e.* with the member of the family ?
- Superspace group compatible with 3d space groups of the family

(3+1)d model, composition dependent, unifying the description of all the members of the family

Embedding of the 3d structure in the (3+1)d super space : principle

(3+1)d super crystal

If parameters for the embedding correctly defined

limited number of atomic domains

- A description of the atomic domains with the pool of functions
- determination of the superspace group compatible with the atomic domains
- د determination of a general (3+1)d model
 - Finding the rules linking the (3+1)d model, the q vector and the ≠ members of the family

make the inventory of the equivalents sections and symmetries versus the q vector and the superspace group

Verify the compatibility between

- the 3d symmetries of the homologous series and the sections analysis
- * the structure solved using classical 3d approach and the (3+1)d model

Summary

- What is it ? What is the aim ?
- **Useful properties of the superspace formalism**
- Some examples, step by step ...
- [∞] Conclusion

Aurivillius phases in the pseudo-binary system Bi₃TiNbO₉-Bi₄Ti₃O₁₂

(exemple kindly provided by Ph. Boullay)

determination of the sub cell : $a \sim ap \sqrt{2}$, $b \sim ap \sqrt{2}$, $c \sim 2$ ap

wave vector q = x . c* composition dependent evolution

systematic observation of the extinction rules

super space group X2cm(00x)000 with X { $\frac{1}{2} \frac{1}{2} \frac{1}{2} 0 / \frac{1}{2} 0 \frac{1}{2} / 0 \frac{1}{2} \frac{1}{2} \frac{1}{2}$ }

centring lattice vector

Bi7Ti4NbO21

perovskite deficient material

AB_{1-x}O₃

structural description using layers

Mono Phosphate Tungsten Bronzes family

chemical formula $(PO_2)_4(WO_3)_{2m}$ with $4 \le m \le 14$

International School

Aperiodic Crystals

member	nember chemical T_{C1}		cell parameters (Å)	Space Group	structural report	
(m)	formula	(K)	$(T \ge T_{C1})$	$(T \geq T_{\mathcal{C}1})$		
4	$P_4 W_8 O_{32}$	80	a=5.28 b=6.57 c=17.35	$P2_12_12_1$	Giroult et al, Acta Crystallogr. B37 (1981)	
5	$P_4 W_{10} O_{38}$	80	a =5.28 b =6.57 c =20.45 β =90.40	P12 ₁ /n1	Roussel et al, Eur. Phys. J. B 12 (1999)	
4/6	$P_4 W_{10} O_{38}$	158	a =5.28 b =6.57 c =20.57 α = 96.18	P2 ₁ 11	Benmoussa et al, J. Solid State Chem. 4 (1982)	
6	$P_4 W_{12} O_{44}$	120	a=5.29 b=6.57 c=23.55	$P2_12_12_1$	Labbé et al, J. Solid State Chem. 61 (1986)	
7	$P_4 W_{14} O_{50}$	188	a =5.29 b =6.56 c =26.65 β=90.19	P12 ₁ /n1	Roussel et al, J. Solid State Chem. 122 (1996)	
8	$P_4 W_{16} O_{56}$	220	a =5.29 b =6.55 c =29.7	$P2_12_12_1$	Labbé et al, J. Solid State Chem. 61 (1986)	
9	$P_4 W_{18} O_{62}$	565	a≃5.28 b≃6.57 c≃32.79 β-2	P12 ₁ /n1	this work	
10	$P_4 W_{20} O_{68}$	450	a =5.324 b =6.575 c =36.00	P212121	this work	
11	$P_4 W_{22} O_{74}$	560	a≃5.3 b≃6.6 c≃39 β= ?	nc	Ottolenghi et al, J. Phys. I Fr. 6 (1996)	
12	$P_4 W_{24} O_{80}$	535	a =5.31 b =6.55 c =42.11	P2 ₁ 2 ₁ 2 ₁	Roussel et al, Acta Crystallogr. B54 (1998)	
13	$P_4 W_{26} O_{86}$	550	a \simeq 5.28 b \simeq 6.57 c \simeq 45.04 $\beta = ?$	nc	Ottolenghi et al, J. Phys. I Fr. 6 (1996)	
14	$P_4 W_{28} O_{92}$	730	a =5.32 b =6.54 c =48.00	nc	Ottolenghi et al, J. Phys. I Fr. 6 (1996)	

m even \implies S.G. P2₁2₁2₁

m odd 📥 S.G. P2₁/n

diffuse scattering

Enlightening of intense reflections

definition of a basic subcell using the "enlightened" reflections

c=(m+2) c'

a=5.29 Å b=6.55 Å c'=2.97 Å α=β=γ=**90°**

modulation vector : $q = \frac{1}{m+2}c'^*$

 $s = ha^* + kb^* + \ell c^* + mq$

from the extinction rules :

SSG : Pnnm(00γ)0s0

MPTBp m=8, P₄W₈O₅₆

cell : a=5.29 Å b=6.55 Å c'=2.97 Å β=90°, SG : P2₁2₁2₁

sub cell : a=5.29 Å b=6.55 Å c'=2.97 Å β=90°

Evidence of 3 atomic domains on the (x_4x_1) and (x_4x_3) sections

evaluation of the relevant parameters of the zig zag function for W and of the sawtooth function for P

W and P atomic domains

O1 atomic domain

evaluation of the relevant parameters of the zig zag function

O2 atomic domain

evaluation of the relevant parameters of the sawtooth function

m dependent model (3+1)d model

evaluation of rules linking members and parameters

atom	x ₁ ⁰	x ₂ ⁰	x ₃ ⁰	x ₄ ⁰	Δ	Δ_{χ}	Δ_y	Δ_z
W	0	0	0	0	$x = \frac{m}{2(m+2)}$	-	$-\frac{m}{12} = -\frac{x}{3(1-2x)}$	-
Р	0	$\frac{8}{9} - \frac{m}{12}$	0	$\frac{1}{4}$	$\frac{1}{m+2} = \frac{1}{2} - x$	-	-	$\frac{1}{4}$
01	$\frac{1}{2}$	$\frac{1}{2}$	0	0	$\frac{1}{2}$	-	$-\frac{(m+2)}{12} = \frac{1}{6(1-2x)}$	-
02	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0	$\frac{m+1}{2(m+2)} = \frac{1}{4} + \frac{x}{2}$	-	$-\frac{(m+1)}{12} = -\frac{(1+2x)}{12(1-2x)}$	-

basic cell : a=5.29 Å b=6.55 Å c'=2.97 Å $\alpha = \beta = \gamma = 90^{\circ}$

modulation vector:
$$\vec{q} = \frac{1}{m+2}\vec{c} = \frac{1-2x}{2}\vec{c}$$
 with $x = \frac{m}{2(m+2)}$

$$(PO_2)_4(WO_3)_{2m} \longleftrightarrow P\frac{2}{m+2}W\frac{m}{m+2}O\frac{3m+4}{m+2} \longleftrightarrow P_{1-2x}W_{2x}O_{2x+2}$$

2₁

2₁

International School

Aperiodic Crystals

member	nember chemical T_{C1}		cell parameters (Å)	Space Group	structural report	
(m)	formula	(K)	$(T \ge T_{C1})$	$(T \geq T_{\mathcal{C}1})$		
4	$P_4 W_8 O_{32}$	80	a=5.28 b=6.57 c=17.35	$P2_12_12_1$	Giroult et al, Acta Crystallogr. B37 (1981)	
5	$P_4 W_{10} O_{38}$	80	a =5.28 b =6.57 c =20.45 β =90.40	P12 ₁ /n1	Roussel et al, Eur. Phys. J. B 12 (1999)	
4/6	$P_4 W_{10} O_{38}$	158	a =5.28 b =6.57 c =20.57 α = 96.18	P2 ₁ 11	Benmoussa et al, J. Solid State Chem. 4 (1982)	
6	$P_4 W_{12} O_{44}$	120	a=5.29 b=6.57 c=23.55	$P2_12_12_1$	Labbé et al, J. Solid State Chem. 61 (1986)	
7	$P_4 W_{14} O_{50}$	188	a =5.29 b =6.56 c =26.65 β=90.19	P12 ₁ /n1	Roussel et al, J. Solid State Chem. 122 (1996)	
8	$P_4 W_{16} O_{56}$	220	a =5.29 b =6.55 c =29.7	$P2_12_12_1$	Labbé et al, J. Solid State Chem. 61 (1986)	
9	$P_4 W_{18} O_{62}$	565	a≃5.28 b≃6.57 c≃32.79 β-2	P12 ₁ /n1	this work	
10	$P_4 W_{20} O_{68}$	450	a =5.324 b =6.575 c =36.00	P212121	this work	
11	$P_4 W_{22} O_{74}$	560	a≃5.3 b≃6.6 c≃39 β= ?	nc	Ottolenghi et al, J. Phys. I Fr. 6 (1996)	
12	$P_4 W_{24} O_{80}$	535	a =5.31 b =6.55 c =42.11	P2 ₁ 2 ₁ 2 ₁	Roussel et al, Acta Crystallogr. B54 (1998)	
13	$P_4 W_{26} O_{86}$	550	a \simeq 5.28 b \simeq 6.57 c \simeq 45.04 $\beta = ?$	nc	Ottolenghi et al, J. Phys. I Fr. 6 (1996)	
14	$P_4 W_{28} O_{92}$	730	a =5.32 b =6.54 c =48.00	nc	Ottolenghi et al, J. Phys. I Fr. 6 (1996)	

m even \implies S.G. P2₁2₁2₁

m odd 📥 S.G. P2₁/n

inventory of the equivalents sections and symmetries *versus* the q vector and the superspace group

SSG Pnnm(00γ)0s0

	(3+1)d Symmetry operators								
x_1, x_2, x_3, x_4	4	$\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4$							
$\frac{1}{2} + x_1, \frac{1}{2} -$	$x_2, \frac{1}{2} - x_3, \overline{x}_4$	$\frac{1}{2} - x_1, \frac{1}{2} + x_2, \frac{1}{2} + x_3, x_4$							
$\frac{1}{2} - x_1, \frac{1}{2} +$	$x_2, \frac{1}{2} - x_3, \frac{1}{2} - x_4$	$\frac{1}{2} + x_1, \frac{1}{2} - x_2, \frac{1}{2} + x_3, \frac{1}{2} + x_4$							
$\overline{x}_1, \overline{x}_2, x_3, \frac{1}{2}$	+ <i>x</i> ₄	$x_1, x_2, \overline{x}_3, \frac{1}{2} - x_4$							
	3d sections								
	section	section	section						
	$t_0 = \frac{2\nu}{4m+2}$	$t_0 = \frac{2\nu+1}{4m+2}$	$\forall t_0$						
m even	$P11\frac{2_1}{m}$	$P2_{1}2_{1}2_{1}$	P112 ₁						
m odd	$P1\frac{2_1}{n}1$	$P2_1nm$	P1n1						

Compatibility with the observed 3d space groups

applying the (3+1)d model

correct for P and W but too simplistic for O

using additional atomic displacements

m=5, P₄W₁₀O₃₈

m=6, P₄W₁₂O₄₄

m=7, P₄W₁₄O₅₀

m=8, P₄W₁₆O₅₆

m=9, P₄W₁₈O₆₂

m=10, P₄W₂₀O₆₈

Summary

- What is it ? What is the aim ?
- **Useful properties of the superspace formalism**
- The method : keys ...
- Some examples, step by step ...
- *c*_{*R*} Conclusion

- ℜ Atypical use of the superspace formalism
- $^{\circ}$ Unified description of \neq members of families of compounds
- Reveals hidden common properties (symmetry, composition ...)
- Reduces the number of refinement parameters
- **For more details you can also contact :**

Luis Elcoro : luis.elcoro@ehu.es Fac. Ciencia y Tecnologia, Universidad del Pais Vasco, UPV 48080 BILBAO

family of terrace-like structures

 $\begin{array}{lll} \text{Bi}_{14}\text{Sr}_{21}\text{Fe}_{12}\text{O}_{61} \text{ (x=7)} & \text{S.G. I2} \\ \text{a}_1\text{=}16.55\text{\AA b}_1\text{=}5.49\text{\AA c}_1\text{=}35.29\text{\AA} \\ & \beta_1\text{=}90.52^\circ \end{array}$

 $\begin{array}{l} \text{Bi}_{12}\text{Sr}_{18}\text{Fe}_{10}\text{O}_{52} \text{ (x=6) } \text{S.G. P2}_1\text{/n} \\ a_1 = 16.48\text{\AA } b_1 = 5.48\text{\AA } c_1 = 30.07\text{\AA } \\ \beta_1 = 91.40^\circ \end{array}$

reciprocal space

direct space

subcell

a₂=3.59Å b₂=5.49Å c₂=3.46Å β_2 =81.90°

wave vector

q

$$q = \frac{1}{7x - 2} [(2x - 1)a_2 - 2xc_2]$$

from the diffraction patterns : SSG X2/m(a0g)0s, with X= $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$

relation with
supercell
$$a_2 = \frac{1}{7x-2} [(x+1)a_1 + 3c_1] \qquad b_2 = b_1 \qquad c_2 = \frac{1}{7x-2} [(2-x)a_1 + 4c_1]$$

 $\begin{array}{rl} \mathbf{x=6} & \mathbf{x=7} \\ \mathbf{Bi_{12}}\mathbf{Sr_{18}}\mathbf{Fe_{10}}\mathbf{O_{52}} & \mathbf{Bi_{14}}\mathbf{Sr_{21}}\mathbf{Fe_{12}}\mathbf{O_{61}} \\ \\ \frac{11}{40}a_2^* - \frac{12}{40}c_2^* & \frac{13}{47}a_2^* - \frac{14}{47}c_2^* \end{array}$

(3+1)d model with 3 independant atomic domains

with crenel function

the resulting structure

 $Bi_{14}Sr_{21}Fe_{12}O_{61} x=7$

adding atomic displacement for cations and oxygen atoms

the resulting structure

= true structure

adding atomic displacement for cations and oxygen atoms

the resulting structure

= true structure

Terrace-like phases

 $\begin{array}{l} Bi_{12}Sr_{18}Fe_{10}O_{52}\\ a=16.49\text{\AA b}=5.48\text{\AA c}=30.86\text{\AA}\\ \beta=91.39^{\circ}\text{ G.E.}:P2_{1}/n \end{array}$

Symmetry ...

In the physical space ...

