

26 September - 2 October 2010, Carqueiranne, France

Charge-density-wave crystals

Sander van Smaalen Laboratory for Crystallography University of Bayreuth Germany

Disclaimer and copyright notice

Copyright 2010 Sander van Smaalen for this compilation.

This compilation is the collection of sheets of a presentation at the "International School on Aperiodic Crystals," 26 September – 2 October 2010 in Carqueiranne, France. Reproduction or redistribution of this compilation or parts of it are not allowed.

This compilation may contain copyrighted material. The compilation may not contain complete references to sources of materials used in it. It is the responsibility of the reader to provide proper citations, if he or she refers to material in this compilation.

The charge-density-wave (CDW) instability

- Electron phonon coupling
- Metal Insulator transition

- Fermi surface nesting
- 2k_F is incommensurate

The electrical conductivity against temperature

Metal-Insulator transition Gap at the Fermi surface

Semiconductor

 $K_{0.3}MoO_3$ blue bronze

K. Hosseini (2000) Ph.D.-thesis, University of Bayreuth.

Nesting of Fermi surfaces in real compounds

Lowering of electronic energy requires atomic modulations

J. Schafer et al., Phys. Rev. Lett. 87, 196403 (2001)

Anisotropic and non-linear conductivities

NbSe₃ — R(b) : R(c) = 1 : 14

CDW is incommensurate along **b**

N.P. Ong & J.W. Brill, Phys. Rev. B 18, 5265 (1978)

Sliding of pinned CDW

compare phason

R. M. Fleming, Phys. Rev. B 22, 5606 (1980)

X-ray diffraction by the CDW of NiTa₂Se₇

 $S = ha^* + kb^* + lc^* + m_1 q^1 + m_2 q^2 + \cdots$ $q = \sigma_1 a^* + \sigma_2 b^* + \sigma_3 c^* \qquad q = 0.483 b^*$

A. Spijkerman et al., Phys. Rev. B 52, 3892 (1995)

Deformation of the sliding CDW in NbSe₃

D. DiCarlo et al., Phys. Rev. Lett. 70, 845 (1993)

Conversion from electronic to sliding-CDW current

$$j_{tot} = j_e + j_i + j_{CDW}$$

$$\rho_{CDW} + \rho_i = 1$$

H. Requardt et al., Phys. Rev. Lett. 80, 5631 (1998)

Incommensurately modulated structure of NbSe₃

SSG 11.2.6.4: $P2_1/m(0, 0.241, 0) \le (1/2, 0.260, 1/2) = 0.000$ S. van Smaalen *et al.*, Phys. Rev. B **45**, 3103 (1992)

Elastic coupling and Residual strain

Atomic valences by the Bond-valence method

$$v_{ij} = \exp[(R_0 - r_{ij})/b]$$

$$b = 0.37 \text{ Å}$$

 R_0 from good structures

Towards a constant valence

Strongly coupled CDW in $R_5 Ir_4 Si_{10}$

 $R_5 Ir_4 Si_{10}$, R = Er, Lu,...

Sc₅Co₄Si₁₀ structure type P4/mbm (Z = 2) a = 12.53 Å, c = 4.21 Å

No obvious 1D features Shelton *et al.* (1986): CDW

H.F. Braun, K. Yvon & R. Braun, Acta Crystallogr. B 36, 2397 (1980)

Combined incommensurate/commensurate CDW transition in $Er_5 Ir_4 Si_{10}$ at $T_{CDW} = 151 K$

Primary order parameter: $\mathbf{q}^1 = (1/2) \mathbf{c}^*$

Modified band-structure provides nesting condition for the incommensurate CDW: $\mathbf{q}^2 = (1/4 \pm \delta) \mathbf{c}^*$

Galli et al., Phys. Rev. Lett. 85, 158 (2000) & J. Phys.: Condens. Matter 14, 5067 (2002)

Lock-in transition in Er₅Ir₄Si₁₀

 $T_{CDW} = 151 \text{ K}:$ $q^1 = (1/2) \text{ c}^*$ and $q^2 = (1/4 \pm \delta) \text{ c}^*$ $T_{lock-in} = 55 \text{ K}:$ $q = (1/4) \text{ c}^*$

Partial restoration of DOS at the Fermi level

Galli et al., Phys. Rev. Lett. 85, 158 (2000)

Coexistence of CDW and AF magnetic order

Galli et al., J. Phys.: Condens. Matter 14, 5067 (2002)

Incommensurability by competing interactions

A₂BX₄ ferroelectrics (K₂SeO₄): local interactions vs optimized packing

N. Yamada et al., J. Phys. Soc. Jpn. 53, 2565-2574 (1984).

 $Pnma(\sigma \ 0 \ 0)0s0$ $\sigma = 2/3 + \delta$

Pn2₁a 3**a-**supercell

Strongly coupled CDW in SmNiC₂

S. Shimomura *et al.*, Phys. Rev. Lett. **102**, 076404 (2009)

Incommensurability of the CDW by frustrated interlayer coupling in SmNiC₂

SSG 38.1.16.13 Amm2(1/2 β 0)000 Atomic a = 3.70, b = 4.53, c = 6.10 Å displacements (x 25) $\mathbf{q} = (1/2, 0.516, 0)$

Wölfel, Liang Li, Shimomura, Onodera & van Smaalen, Phys. Rev. B 82, 054120 (2010)

Interatomic distances in the CDW phase of SmNiC₂

Wölfel, Liang Li, Shimomura, Onodera & van Smaalen, Phys. Rev. B 82, 054120 (2010)

Fermi surface of SmNiC₂

a*

A. Wölfel *et al.*, Phys. Rev. B **82**, 054120 (2010)
J. Laverock *et al.*, Phys. Rev. B **80**, 125111 (2009)

J. Schafer et al., Phys. Rev. Lett. 87, 196403 (2001)

Extended zone Fermi surface of SmNiC₂

J. Laverock *et al.,* Phys. Rev. B **80**, 125111 (2009)

a*

Diffuse X-ray scattering for $T > T_c$ of SmNiC₂

S. Shimomura et al., Phys. Rev. Lett. **102**, 076404 (2009)

Increasing temperature gives increasing FWHM and decreasing correlation length

H, K-Plane of diffuse X-ray scattering of SmNiC₂

 $T > T_c = 148 \text{ K}$ T = 160 K Correlation length from FWHM 116.3 Å along **a** 94.3 Å along **b**

X-ray data by S. Shimomura et al.

Summary

CDW involves conduction band and atomic modulations Sliding of incommensurate CDW (phason degree of freedom) Commensurate CDW in SmNiC₂ along **a** Lowest electrical resistance along **a** Magnitude and direction of largest modulation amplitude Warped planar Fermi surface perpendicular to a Correlation length of CDW fluctuations above T_c CDW in SmNiC₂ is rendered incommensurate by frustration of interchain interactions