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Purpose:

A concise introduction to aperiodic tilings
A geometrical basis of the following lectures on
modeling of quasicrystals

Outline
Part A; 1. Introduction
2. Hyper-space formalism
3. Methods of construction
4. Important examples
Part B: 5. Classification scheme

6. Embedding lattices
7. Approximants
8. Phason flips



1. Introduction



Aperiodic crystals

No translation symmetry
Some kind of long-range orders (Bragg reflections)

Quasicrystals
Decomposed into several types of building units (cells)
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Tilings

Tilings: A mathematical representation of the space filling
problem with a set of geometrical shapes (cells).

The theory of aperiodic tilings is a basis for understanding
the structural properties of quasicrystals.
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An aperiodic tiling

1234..

(P.9)

1/71/7)

v (m,n)
= Cos(npm+g)+Cos(ngn+4¢))

v=20 v<0

Monohedpral tiling
(there is only one type of tiles)

di-hedral
tri-hedral

k—1.1.e.(.1.ral



Fibonacci chain

1 1/t 1 1 1/t 1 1/t 1 1 1/t 1 1 1/t

— 1+2\/§ ~1.618 (golden mean)

T

Aperiodic

Two types of tiles (di-hedral)

Bragg reflections (long-range ordered)
Self-similarity

Repetitivity ~ every patch in the tiling appear repeatedly
with bounded distances between them.

The set of verticesV < M ={n,+n,/z|n, n, € Z}
(a module of rank 2)



Self-similarity

L’ S’ L’ L’ S’ L’ S’ |
LSLLSLSLLSLLS... =L'ST'L'S'L'S'L"... (L'=LS, S’=L)

Substitution rule

)
L—-15 [ 15— 1SL—LSLLS— LSLLSLSL
J m» @ 06 ©) ®)

S—L
N — LSLLSLSLLSLLS — ... — limit (fixed point)

(13)

F ., =F +F_, (F=0,F,=1, F,=1, F,=2, F,=3, F.=5, F.=8 F,=13, ...)

(Fibonacci sequence)



Rhombic Penrose tiling
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Self-similarity
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Matching rules

The rhombic Penrose
tiling is known to be a
representative example
of tilings whose
aperiodicity is enforced
by the tiles (decorated
by arrows).

target vertex <> Q

target vertex




2. Hyper-space formalism



The embedding of the Fibonacci chain

1 1/t 1 1 1/1

X =n+n,/reM

@ (%0, ¥o) = (0,0)

(Xn ! yn) = (O’ ¢) + nléi + nzéz
Zigzag chain







Quasiperiodic tiling
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3. Methods of construction



Methods of construction

Cut-and-projection
Dual-grid method
Substitution method
inflation-deflation

(N.G. de Bruijn, 1981)




The D-dimensional physical space is embedded in an N-dimensional
hyperspace, in which a periodic lattice is defined. Since the slope of the
physical space relative to the lattice planes is incommensurate, the
embedding lacks any periodicity.

v



A strip along the physical space is drawn (white part). The cross section of
the strip (window) is given by the projection of a unit cell (square) onto the
internal space. The Fibonacci chain is obtained by projecting the points
within the strip down to the physical space (x-axis). This is an easy-to-grasp
way to construct aperiodic tilings, called the cut-and-projection method .



Here, we show the section method, in which the projected figure of each
square down to the internal space (a line segment) is attached to the base
point of the relevant square. The projected figure is called the atomic surface.
Then the points in the physical space can be obtained as a section through
the periodic arrangements of the atomic surfaces along the physical space.



It is very easy to check that the point set obtained by the section method is
equivalent to the one obtained by projecting the points within the strip,
whose cross section is congruent with the atomic surface. It is easy to see
that an atomic surface has an intersection with the physical space if and only
if the corresponding lattice point is within the strip.









Let’s see how the cut-and-projection method is connected
with the substitution rule. To identify an LS pair with an
L’, we need to remove the vertex between L and S. This is
achieved by narrowing the window by a certain amount.

.
L"=LS

v



Here, the window is reduced by a factor of 1/1, where 1 is the golden mean.
The L’ tiles are shown by green color. Note that the tile does not correspond
to the projection of an edge of the square unit cell.

v



However, if we remember that unit cell can also be taken as a parallelogram,
the new tile will be the projection of an edge of a parallelogram. Now we
will change the scale of x and y by 1/t and 1, respectively.









Methods of construction

Cut-and-projection
Section method

Dual-grid method
(N.G. de Bruijn, 1981)

Substitution method

(inflation-deflation)



Dual-grid method for the Fibonacci chain

1= -1 2 6
S S S S S
(1,2) /33 A4 L 65) /I~
DO |
(J .0’.0 A
I
4



Dual-grid method for the Fibonacci chain

Two sets of grids in the hyper space:

npa; +n,a,

(ny+s)) a; + 0 a, (—00<f <)

0 a; + (ny+sy) a, (—0<f <o)

51, 5

Two sets of grids in the physical space:

(ny*+sy) a; + 0 a, = (x, 0)
—x=(2-1/7) (ny+sy), 0 =1/ 7 (ny+sy)

0 a; + (n,ts;) a, = (x, 0)
—x=(1+2/7)(ny*sy), 0 =7 (nytsy)

.. lattice point
.. grid lines 1
.. grid lines 2

.. shift parameters

... grid points1 A

... grid points 2 ©




Dual-grid method for the Fibonacci chain

Indices for the two unit cells on both sides of a grid point

(for grid points 1) x=(2-1/7) (ny+sy), @ =1/7 (ny+sy)

n, = 6 —Frac[ 0]

(ny, n,), (n,=1, n,) ... indices for the squares
(for grid points 2) x =(1+2/7) (n,+s,), @ = v (ny*s,)

n, = 6 —Frac[ 0]

(14, ny), (ny, n,=1) ... indices for the squares

Once the indices are obtained, the vertices of the tiling are just the projection
of them onto the physical space. =~ Usex=n;+n,/t



4. Important examples



Example 1: Ammann-Beenker tiling (8mm)
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a; = (cos(¢), sin(g), cos(3¢9), sin(3¢)), j=1,2,3,4; ¢ =n(j-1)/4
a;a; = 20;; (4D hypercubic lattice)

a3,phys

Ay phys A2 phys

=
<
V2]
¢ -—-—-—-——




L ={(n,+s;) a; + (n,+s,)a, + (ny+ss;)as + (n,+s,)a,} ... hyper-cubic lattice

(ny) = (n;+sy)a; + {ta, + tzay + t,a,)
8,(1y) = (N, + 5,) ap + {fa; + ta; + f,a,) ... hyper grids
(13) = ( )a; + {t;a; + ha, + t,a,}
(ny) = (ny+s,)a, + {tja; + Ha, + tia;)

( ) 2( ) a; ,phys {2 t3a3,phys} - ]hl( )
gZ(nZ) N Ephys 2(”2 ) 4, phys {2 t4a4,phys} - h2(n2>
( ) 2( ) a3, phys {2 tlal,phys} - ]hS( )
( ) 2( ) dy ,phys {2 t2a2,phys} - ]h4( )

.. grids in the physical space (intersection of
the hyper grids with the physical space)



... intersection of grid lines (point)

NS

A
Y

2X0ay
AN

.

hi(n,-1)  hyn)  hy(nr1)  BelnTl) hy(12)



(x,y,0,0)=(n;+s;)a; +(n,+s,)a, + t;a;+ ta,

~

ty;=a’5 (x,y,0,0)=n;+s; +3 [ ny=[t;—s;], 0 =Frac(t;—s,)

t,=a’, (x,v,0,0)=n,+s, +9| n,=[t,—s,], & =Frac(t,—s,)

a*]' = 1/2 a] (] = 1, 2, 3, 4:)

\ . .
... the reciprocal basis vectors

At the intersection point, the physical space cut through four hyper
cubic unit cells. The base points of these unit cells are:

@ (ny, ny,n3, ny)

@ (n;-1,n,,n3, ny)
€) (ny, n,=1,n5,ny)
@ (

For general interaction points, hy(r;) N h;(1;), the relevant four
hypercubes are identified in a similar manner; for k # 1, ;.




Ammann-Beenker tiling (8mm)
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Example 2: Rhombic Penrose tiling (10mm)

perpendicular
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\/2/5(cos¢j ,SIN @, ,C0S 2¢;,5IN 29, ,\/1/2) ,
7=1,2,3,4,5; ¢]~=27c(j—1)/5

| =05 (5D hyper-cubic lattice)
E A2 phys E
phys perp
aS,phys

al,phys

a5,pe1:'p

A4 phys as phys



L ={(nits))a; + (ny*sy)a, + (n3+s3)ag + (ny+sy)a, + (n15+55)as)

(n1) = (ny + s1) a; + {ha, + ta; + ta, + tsas)
(ny) = (ny+ 5y) ap + {Ha) + tya; + tya, + tsas)
83(113) = (N3 + s3) a; + {ha; + ha, + t,a, + fsa5)
(ny) = (ny+sy) ay + {Ha; + tha, + tay + tsas)
(n5) = (n5+ s5) a5 + {fa; + ta, + ag+ ta,)

.. hyper-cubic lattice

.. hyper grids in 5D
a5,phys) } = hl(nl)
a1,phys) } - hZ(n2)
a2,phys) } —. h3(7’l3)
a3,phys) } = h4(7’l4)
a4,phys)} = h5(7”l5)

.. grids in the physical space (intersection with the physical space)



h,(n,) N h(n)) ... intersection of hyper grids (point)

-

> X ‘4

| } (x,y, 0.0 \hz(il +1)

. X 25 —~2)
- )

h,(n;-1) hy(n;)  hy(nyt1)



(x,¥,0,0,0)=(n;+s;)a; + (n,+s,)a, +t;as;+ t,a,+ ta;

t,=a"; (x,14,0,0,0)=n;+s; +3 T
t,=a’, (x,v,0,0,0)=n,+s, +& ny, =
ts=as" (x,4,0,0,0)=n;+s; +3” ns =

-

5 —
-
5 —
a*]-=a]-(j=1,2,3,4,5)

s;], 0 =Frac(t;—s;)
s,], 0" =Frac(t,—s,)
ss], 6" = Frac(t;— s;)

.. the basis vectors of the

reciprocal lattice

At the intersection point, the physical space cut through four hyper
cubic unit cells. The base points of these unit cells are:

@ (ny, ny,n3, 1y, n5)

@ (n;-1, ny,n3, ny, ns)
€) (ny, n,=1,n3, ny, ns)
@ (n (n;—1,n,-1,n5, ny, ny)

For general interaction points, hy(r;) N h;(1;), the relevant four
hypercubes are identified in a similar manner; for k # 1, ;.

~
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Summary of Part A

1. The hyperspace scheme is the most basic concept for
describing aperiodic tilings that are related to
quasicrystals.

2. The four techniques for constructing aperiodic
tilings are connected with each other through the
hyper-space.

3. The dual-grid method is a practical method for
constructing the Ammann-Beenker tiling and the
rhombic Penrose tiling.



Computer programs: drawing quasiperiodic tilings in the plane

PROGRAM 1: “AmmannBeenker2pov.pl’
PROGRAM 2: ‘Penrose2pov.pl’

These programs (written in Perl, approx. 300 lines) generate Ammann-
Beenker and rhombic Penrose tilings with the grid method.

To run with Windows, you need ActivePerl (ver 5.12) and Povray (v.3.6)
installed on your computer. These can be downloaded from

http:/ /www.activestate.com/activeperl/downloads

http:/ /www.povray.org/download/

The installation is very simple.

Put each of the .pl files into an empty folder. Double clicking the file to
run. Then three output files are generated. (The “.pl” extension should be
associated with perl command. But usually it is done automatically when
you install ActivePerl.)

The output files are (1) the tiling, (2) grid lines (3) mapping of the vertices
to the internal space. If you open them in Povray and run, each of these
objects can be displayed.


http://www.activestate.com/activeperl/downloads
http://www.povray.org/download/
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Projection of the
outer boundaries

/ of a unit cell in

the 5D hypercubic
lattice

Rhombic icosahedron
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