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Purpose:

A concise introduction to aperiodic tilings
A geometrical basis of the following lectures on 

modeling of quasicrystals
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1. Introduction



Aperiodic crystals

No translation symmetry
Some kind of long-range orders (Bragg reflections)

Quasicrystals
Decomposed into several types of building units (cells)

M. Mihalkovic et al., Phys. Rev. B 65, 104205 (2002)
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Tilings

Tilings: A mathematical representation of the space filling 
problem with a set of geometrical shapes (cells).

The theory of aperiodic tilings is a basis for understanding 
the structural properties of quasicrystals.



An aperiodic tiling

v (m,n)
= Cos(ppm+f)+Cos(pqn+f’))

Monohedral tiling
(there is only one type of tiles)

di-hedral
tri-hedral

…..
k-hedral
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(p,q)=(1/t,1/t)

v ≥ 0 v < 0



Fibonacci chain

Aperiodic

Two types of tiles (di-hedral)

Bragg reflections (long-range ordered)

Self-similarity

Repetitivity ~ every patch in the tiling appear repeatedly 
with bounded distances between them.

The set of vertices V ⊂
(a module of rank 2)
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Self-similarity

Substitution rule

L L L L L L L LS S S S S

L’ S’ L’ L’ S’ L’ S’ L’

LSLLSLSLLSLLS… ≅ L’S’L’L’S’L’S’L’…    (L’=LS, S’=L)

L → LS

S → L

L → LS → LSL → LSLLS → LSLLSLSL
(1) (2)            (3)                   (5)                          (8)

→ LSLLSLSLLSLLS →  … → limit (fixed point)
(13)

Fn+1 = Fn + Fn-1 (F0=0, F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, F7=13, … )

(Fibonacci sequence)



Rhombic Penrose tiling

Aperiodic

Di-hedral

Bragg reflections

Self-similarity

Repetitivity

V⊂ M (rank 4)

a3

a0

a1

a2

a4
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Matching rules

The rhombic Penrose 
tiling is known to be a 
representative example 
of tilings whose 
aperiodicity is enforced
by the tiles (decorated
by arrows).

target vertex

target vertex



2. Hyper-space formalism
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The embedding of the Fibonacci chain

 t/21n nnx M

1 1 1 1 1 1 1 11/t 1/t 1/t 1/t 1/t

a1 a1 a1 a1 a1 a1 a1 a1a2 a2 a2 a2 a2

Zigzag chain

),0(),( 00 yx

2211),0(),( ananyx nn


 



W
in

d
o

w

x

y


tt



ttt

t


t

t









-







 








-








-








 
-

1
2

Frac1
1

1
31

Frac
1

,

21

2121

n
nnnx

n
nnynnn

n

n

Cut-and-projection
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Quasiperiodic tiling

hyper-lattice … higher-dimensional lattice
hyper-space … higher-dimensional space 
embedding dimensions (n)

… dimensions of the hyper-space

The rank (r) of the module 
M for the rhombic Penrose 
tiling is 4, while the most 
frequent choice for the 
hyper-lattice is a 5D hyper-
cubic lattice.

n ≥ r



3. Methods of construction



Methods of construction

Cut-and-projection
Section method

Substitution method
(inflation-deflation)

Dual-grid method
(N.G. de Bruijn, 1981)

hyperspace



x

y

The D-dimensional physical space is embedded in an N-dimensional 
hyperspace, in which a periodic lattice is defined. Since the slope of the 
physical space relative to the lattice planes is incommensurate, the 
embedding lacks any periodicity.
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A strip along the physical space is drawn (white part). The cross section of 
the strip (window) is given by the projection of a unit cell (square) onto the 
internal space. The Fibonacci chain is obtained by projecting the points 
within the strip down to the physical space (x-axis). This is an easy-to-grasp 
way to construct aperiodic tilings, called the cut-and-projection method .
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Here, we show the section method, in which the projected figure of each 
square down to the internal space (a line segment) is attached to the base 
point of the relevant square. The projected figure is called the atomic surface. 
Then the points in the physical space can be obtained as a section through 
the periodic arrangements of the atomic surfaces along the physical space. 
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It is very easy to check that the point set obtained by the section method is 
equivalent to the one obtained by projecting the points within the strip, 
whose cross section is congruent with the atomic surface. It is easy to see 
that an atomic surface has an intersection with the physical space if and only 
if the corresponding lattice point is within the strip.



x

y

Here is yet another way to look at the hyperspace scheme. In the above 
figure, one can recognize that a lattice point lies within the strip if and only 
if the relevant square has an intersection with the physical space. All the 
squares which are intersected with the x-axis are colored in red. 
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If we forget about the window or atomic surface, it looks like a barbeque 
skewer  (yakitori stick) penetrating pieces of meat. If the base points of the 
pieces of meat are projected down to the physical space, we get the 
aperiodic tiling. This is the basic idea underlying the dual-grid method.
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Let ’s see how the cut-and-projection method is connected 
with the substitution rule. To identify an LS pair with an 
L’, we need to remove the vertex between L and S. This is 
achieved by narrowing the window by a certain amount. 

L’ = LS

S’ = L

L S
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Here, the window is reduced by a factor of 1/t, where t is the golden mean. 
The L’ tiles are shown by green color. Note that the tile does not correspond 
to the projection of an edge of the square unit cell.

L’ S’
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However, if we remember that unit cell can also be taken as a parallelogram, 
the new tile will be the projection of an edge of a parallelogram. Now we 
will change the scale of x and y by 1/t and t, respectively.

L’ S’









-










tt
t

1
,1,

1
, 221 bb



x

y

Then what happens is that the parallelogram will turn to a square again. In 
fact we need to reverse the sign of y in order to fully recover the square 
lattice in the same orientation.
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Now, we have seen that even the self-similarity and the substitution rule of 
the Fibonacci lattice can be explained within the framework of hyper-space 
geometry.
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Methods of construction

Cut-and-projection
Section method

Substitution method
(inflation-deflation)

Dual-grid method
(N.G. de Bruijn, 1981)

hyperspace



n1= -1 0 1 2 3 4 5 6

n2= 0 1 2 3

4

5

6

7

(2,2)

(1,2)

(1,1)

(2,3)
(3,3)

(4,3)

(4,4)

(5,4)

(6,4)

(6,5)

Dual-grid method for the Fibonacci chain



Two sets of grids in the hyper space:

n1 a1 + n2 a2 … lattice point

(n1+s1) a1 + q a2 (-∞<q <∞) … grid lines 1

q a1 + (n2+s2) a2 (-∞<q <∞) … grid lines 2

s1, s2 … shift parameters

Two sets of grids in the physical space:

(n1+s1) a1 + q a2 = (x, 0)
→ x = ( 2 - 1/t ) (n1+s1), q   1/t (n1+s1) … grid points 1

q a1 + (n2+s2) a2 = (x, 0)
→ x = ( 1 + 2/t ) (n2+s2) , q   t (n2+s2) … grid points 2
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Dual-grid method for the Fibonacci chain



Indices for the two unit cells on both sides of a grid point

(for grid points 1) x = ( 2 - 1/t ) (n1+s1) ,  q   1/t (n1+s1)

n2 = q - Frac[q ]

(n1, n2), (n1-1, n2) … indices for the squares

(for grid points 2) x = ( 1 + 2/t ) (n2+s2) , q   t (n2+s2)

n1 = q - Frac[q ]

(n1, n2), (n1, n2-1) … indices for the squares

Dual-grid method for the Fibonacci chain

Once the indices are obtained, the vertices of the tiling are just the projection
of them onto the physical space.      Use x = n1 + n2 / t



4. Important examples



Example 1: Ammann-Beenker tiling (8mm)

Embedding dimension = 4

{(x, y, z, u)}= {(x, y)} + {(z, u)}

hyperspace         physical        perpendicular

space Ephys space Eperp

a1,phys

a2,phys

a3,phys

a4,phys

45˚

Ephys



aj = (cos(fj), sin(fj), cos(3fj), sin(3fj)), j = 1, 2, 3, 4 ; fj = p( j-1)/4

ai· aj = 2dij (4D hypercubic lattice)

a1,phys

a2,phys

a3,phys

a4,phys

45˚

Ephys Eperp

a1,perp

a2,perp

a3,perp

a4,perp

45˚



L = {(n1+s1) a1 + (n2+s2)a2 + (n3+s3)a3 + (n4+s4)a4} … hyper-cubic lattice

g1(n1) = (n1 + s1 ) a1 + {t2a2 + t3a3 + t4a4}
g2(n2) = (n2 + s2 ) a2 + {t1a1 + t3a3 + t4a4} … hyper grids

g3(n3) = (n3 + s3 ) a3 + {t1a1 + t2a2 + t4a4}
g4(n4) = (n4 + s4 ) a4 + {t1a1 + t2a2 + t3a3}

g1(n1) ∩ Ephys = 2(n1 + s1 ) a1,phys + {2 t3a3,phys } =: h1(n1) 
g2(n2) ∩ Ephys = 2(n2 + s2 ) a2,phys + {2 t4a4,phys } =: h2(n2) 
g3(n3) ∩ Ephys = 2(n3 + s3 ) a3,phys + {2 t1a1,phys } =: h3(n3)
g4(n4) ∩ Ephys = 2(n4 + s4 ) a4,phys + {2 t2a2,phys } =: h4(n4)

… grids in the physical space  (intersection of 
the hyper grids with the physical space)

l



(x, y , 0, 0)

hi(ni) ∩ hj(nj) … intersection of grid lines (point)

h1(n1) h1(n1+ 1)h1(n1 -1)

h2(n2+1)

h2(n2)h2(n2-1)

Ephys



(x, y , 0, 0) = (n1 + s1 ) a1 + (n2 + s2 ) a2 + t3a3 + t4a4

t3 = a*
3 · (x, y, 0, 0) = n3 + s3  + d n3 = [t3 - s3 ],  d = Frac(t3 - s3)

t4 = a*
4 · (x, y, 0, 0) = n4 + s4  + d’ n4 = [t4 - s4 ],  d’ = Frac(t4 - s4)

a*
j = ½ aj ( j = 1, 2, 3, 4)

… the reciprocal basis vectors 

At the intersection point, the physical space cut through four hyper 
cubic unit cells. The base points of these unit cells are:

① (n1 , n2 , n3 , n4 )
② (n1 -1, n2 , n3 , n4 )
③ (n1 , n2 -1 , n3 , n4 )
④ (n1 - 1 , n2 -1, n3 , n4 )

For general interaction points, hi(ni ) ∩ hj(nj), the relevant four 
hypercubes are identified in a similar manner; for k ≠ i, j.



h1(n1 ) h2(n2)

(x, y , 0, 0)

①②

③④

Ammann-Beenker tiling (8mm)



Example 2: Rhombic Penrose tiling (10mm)

Embedding dimension = 5

{(x, y, z, u, v)}= {(x, y)} + {(z, u, v)}
hyperspace         physical        perpendicular

space Ephys space Eperp

Ephys

a1,phys

a2,phys

a3,phys

a4,phys

a5,phys



, 
j = 1, 2, 3, 4, 5 ; fj = 2p( j-1)/5

(5D hyper-cubic lattice)

 )2/1,2sin,2cos,sin,cos5/2 jjjjj ffffa

ijji daa

Ephys

a1,phys

a2,phys

a3,phys

a4,phys a5,phys

Eperp

a1,perp

a4,perp

a2,perp

a5,perp

a3,perp



L = {(n1+s1)a1 + (n2+s2)a2 + (n3+s3)a3 + (n4+s4)a4 + (n5+s5)a5}
… hyper-cubic lattice

g1(n1) = (n1 + s1 ) a1 + {t2a2 + t3a3 + t4a4 + t5a5} 
g2(n2) = (n2 + s2 ) a2 + {t1a1 + t3a3 + t4a4 + t5a5} … hyper grids in 5D
g3(n3) = (n3 + s3 ) a3 + {t1a1 + t2a2 + t4a4 + t5a5} 
g4(n4) = (n4 + s4 ) a4 + {t1a1 + t2a2 + t3a3 + t5a5} 
g5(n5) = (n5 + s5 ) a5 + {t1a1 + t2a2 + t3a3 + t4a4} 

g1(n1) ∩ Ephys = 5/2(n1 + s1 ) a1,phys + { t (a2,phys - a5,phys) } =: h1(n1) 
g2(n2) ∩ Ephys = 5/2(n2 + s2 ) a2,phys + { t (a3,phys - a1,phys) } =: h2(n2) 
g3(n3) ∩ Ephys = 5/2(n3 + s3 ) a3,phys + { t (a4,phys - a2,phys) } =: h3(n3)
g4(n4) ∩ Ephys = 5/2(n4 + s4 ) a4,phys + { t (a5,phys - a3,phys) } =: h4(n4)
g5(n5) ∩ Ephys = 5/2(n5 + s5 ) a5,phys + { t (a1,phys - a4,phys) } =: h5(n5)

… grids in the physical space  (intersection with the physical space)



hi(ni) ∩ hj(nj) … intersection of hyper grids (point)

h1(n1) h1(n1+ 1)h1(n1 -1)

h2(n2+1)

h2(n2)

h2(n2-1)

(x, y, 0, 0, 0)



(x, y , 0, 0, 0) = (n1 + s1 ) a1 + (n2 + s2 ) a2 + t3a3 + t4a4+ t5a5

t3 = a*
3 · (x, y, 0, 0, 0) = n3 + s3  + d n3 = [t3 - s3 ],  d = Frac(t3 - s3)

t4 = a*
4 · (x, y, 0, 0, 0) = n4 + s4  + d’ n4 = [t4 - s4 ],  d’ = Frac(t4 - s4)

t5 = a*
5 · (x, y, 0, 0, 0) = n5 + s5  + d’’ n5 = [t5 - s5 ],  d’’ = Frac(t5 - s5)

a*
j = aj ( j = 1, 2, 3, 4, 5)

… the basis vectors of the 
reciprocal lattice

At the intersection point, the physical space cut through four hyper 
cubic unit cells. The base points of these unit cells are:

① (n1 , n2 , n3 , n4 , n5 )
② (n1 -1, n2 , n3 , n4 , n5)
③ (n1 , n2 -1 , n3 , n4 , n5)
④ (n1 - 1 , n2 -1, n3 , n4 , n5)

For general interaction points, hi(ni ) ∩ hj(nj), the relevant four 
hypercubes are identified in a similar manner; for k ≠ i, j.



h1(n1)

h2(n2)

(x, y , 0, 0, 0)
①②

③④



Summary of Part A

1. The hyperspace scheme is the most basic concept for 
describing aperiodic tilings that are related to 
quasicrystals.

2. The four techniques for constructing aperiodic
tilings are connected with each other through the 
hyper-space.

3. The dual-grid method is a practical method for 
constructing the Ammann-Beenker tiling and the 
rhombic Penrose tiling.



Computer programs: drawing quasiperiodic tilings in the plane

PROGRAM 1: ‘AmmannBeenker2pov.pl’

These programs (written in Perl, approx. 300 lines) generate Ammann-
Beenker and rhombic Penrose tilings with the grid method. 
To run with Windows, you need ActivePerl (ver 5.12) and Povray (v.3.6) 
installed on your computer. These can be downloaded from 
http://www.activestate.com/activeperl/downloads
http://www.povray.org/download/
The installation is very simple.

Put each of the .pl files into an empty folder. Double clicking the file to 
run. Then three output files are generated. (The ‘.pl’ extension should be 
associated with perl command. But usually it is done automatically when 
you install ActivePerl.)

The output files are (1) the tiling, (2) grid lines (3) mapping of the vertices 
to the internal space. If you open them in Povray and run, each of these 
objects can be displayed. 

PROGRAM 2: ‘Penrose2pov.pl’

http://www.activestate.com/activeperl/downloads
http://www.povray.org/download/






Projection of the 
edges of a  unit 
cell in the 4D 
hypercubic lattice







Projection of the 
outer boundaries 
of a unit cell in 
the 5D hypercubic 
lattice

Rhombic icosahedron
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