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Quasicrystal : general introduction
The Fibonnacci chain

Generalised 1D quasicrystals
Structure determination

A A

Generalization to higher dimensions.

References can be found in the book:

Janssen T., Chapuis G. and de Boissieu M.: Aperiodic Crystals.
From modulated phases to quasicrystals, Oxford University Press,
Oxford 2007.
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What is a quasicrystal?

e Aperiodic crystals:
Crystal: ‘Diffraction pattern is essentially discrete’

Aperiodic crystal: Bragg peaks and indexing with
more than 3 integers.

 Symmetry allowed by lattice translation:
1,2, 3,4 and 6.
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Periodicity and allowed symmetry

* Let us consider a periodic structure, with periodicity T
and a n-fold rotation axis.

T1-T2=nT is also a lattice translation
This implies that 2cos(2r/n)=integer

True only if n=1, 2, 3, 4 and 6: ‘allowed’ symmetry with
periodicity.
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Quasicrystal

e Quasicrystal: diffraction pattern with sharp Bragg
peaks and a symmetry incompatible with lattice
translation.

* |cosahedral symmetry and 5-fold rotation for
Instance.

e Other symmetry exists.
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Quasicrystal discovery

e 1982: Shechtman observes the first icosahedral
diffraction pattern in a rapidly quenched AlMn alloy.
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VOLUME 53, NUMBER 20 PHYSICAL REVIEW LETTERS 12 NOVEMBER 1984

Metallic Phase with Long-Range Orientational Order and No
Translational Symmetry

D. Shechtman and I. Blech
Department of Materials Engineering, Israel Institute of Technology— Technion, 3200 Haifa, Israel

and

D. Gratias
Centre d’Etudes de Chimie Métallurgigue, Centre National de la Recherche Scientifique, F-94400 Vi try, France

and

J. W. Cahn
Center for Materials Science, National Bureau of Standards, Gaithersburg, Maryland 20760
(Received 9 October 1984)

We have observed a metallic solid (Al-14-at.%-Mn) with long-range orientational order,
but with icosahedral point group symmetry, which is inconsistent with lattice translations. Its
diffraction spots are as sharp as those of crystals but cannot be indexed to any Bravais lattice.
The solid is metastable and forms from the melt by a first-order transition.

e Rapidly solidified Al-Mn alloy
e Electron diffraction pattern : icosahedral symmetry

e Single grain diffracting.
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Quasicrystal discovery

7
{,?'\I 2,

e |cosahedral symmetry of the diffraction pattern
e 5-fold axis (6), 3-fold axis (20), 2-fold axis (30)
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VOLUME 53, NUMBER 20 PHYSICAL REVIEW LETTERS 12 NOVEMBER 1984

Metallic Phase with Long-Range Orientational Order and No
Translational Symmetry

International School
( ) = 0N g
Aperiodic Crystals



Quasicrystal discovery

 Bragg peaks and ‘forbidden’ symmetry.
e New long range order: quasicrystals

e |sitreally a quasicrystal?
e Other explanations? Twinning?
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Apparent icosahedral symmetry
Isduetodirected
multiple twinning of cubic aystals

Linus Pauling

Linus Pading Institute of Seence and Medicine,
440Page Mill Road, Palo Alto, California 94306JUSA

Recatly the announcement was made of the remarkable
discovery of mtermetdllc compounds with approximate
composition MA1® (M = Cr, Mn, Fe that formed crystds or
pseuwocrystals with icosehedral symmeiry, as shown by the
shape of the small nodules and by ther electron diffradion
patterns’. | have found it hard to bdieve that any single crystd
with 5fold axes could give reasnably sharp diffracion
pattems, resembling thosegiven by crystals,and | have not been
convincedto the contrary by the theoreticd disaissons of this
possibility that have been publishal®’. | therdore set mysdf
the task of predicting how a molten alloy of Mn (or Cr or Fe)
and Al might read to sudden cooling. | have dismveread that
such an alloy on sudden cooling could form a metagable cubic
crystal with a large cube edge about 26,7+ with the unit cube
containing about 1,120atoms (possbly a few more), and that
thesecrystals would show ordered multiple growth such that 20
of them, roughly tetrahedral in shge, grow out from a central
seal in such a way as to produce an aggregate with
approxmately icosahara symmetry.

~ y ‘ . International School
Rapidly-solidified Al-Fe alloy  =rom E Abe {Ur"'o' 317D 512(1985)
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Quasicrystal symmetry

e |cosahedral: ‘3D’ quasicrystal.

 Decagonal quasicrystal: 2D QC + 1D periodic
 Dodecagonal 2D QC + 1D periodic
e QOctagonal 2D QC + 1D periodic
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Symmetry of quasicrystals

Three dimensional Qc Two dimensional Qcs

lcosahedral symmetry Octagonal Dodecagonal Decagonal

10-fold Rl

920°
periodic

L

quasiperiodic

There is only one (icosahedral)
3-d Qc!!

Courtesy A.P. Tsai
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Which systems form quasicrystals?

Mainly metallic alloys.
First rapidly quenched Al-based alloy.
Small grains (~ 1 um)

Defects, broad Bragg peaks.

H.U. Nissen

Al alloys and others

A-TM(TM=V, Cr, Mn, Ru.....) TM:15~20%
Al-(Mn.Cr, Fe)-(Si.Ge) Al: 60~70%, TM<20%
Al-(Cu, Pd)-TM(TM=Cr, Mo, )

GazoPdyeMnyg, CuynCdgg

Zr-Ni-Ti

/n and Cd alloys

Mg-Al-(Zn,Cu,Au,Pd,Ag)
Ga-Mg-Zn

Zn-Mg-RE(RE=rare earth metals)
Cd-Mg-RE




Which systems form quasicrystals?

e j-AlLiCu: first large single grain quasicrystal. But
rather poor crystal quality (Dubost and Audier)

Diffraction pattern contains only a
limited number of Bragg peaks.

But allowed the first X-ray and
neutron study on a single crystal.

( International School
’ Aperiodic Crystals




Stable quasicrystals

e A.P. Tsai has discovered the first stable i-AlCuFe
qguasicrystal of very good quality.

 Can be obtained by slow cooling from the melt

= 0N
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Stable quasicrystals

* Now a large number of examples

e Stabilised by a Hume-Rothery mechanism (e/a ratio)

List of stable
icosahedral
guasicrystals (from A. P.
Tsai)

CdgsMg;Mis (M:Yb Ca Y Ho Gd Er
Th)

ZngMgsScs

Ing,Ag,M,; (M:Yb Ca)

Zn;,AgQ,,S¢Ce £N:PdScy;

In;Fe;S5c5,.Zn:3C0505 ZNsNi(Scys

P-type F-type
Al-Mn-Si AlssCuysTM,,(TM:Fe Ru Os)
Al;oPdy TM,,(TM:Mn Tc Re)
Zn-Mg-Al | AlsLizCu Zng Mg, RE((RE:Y Dy Ho Gd Er Th)
Zn;;MgyRE ((RE:Er Ho) Zn;;MgoTM; (TM:Zr HT)
Cd-Yb Cd. M (M:Yb Ca)

=" 0n__

(i- International School
Aperiodic Crystals




A few examples of stable quasicrystals

I.R. Fisher et al.
Phil. Mag. B77,
1601-1615, (1998

ZnMgY, |.R Fisher et al.

A.P. Tsai et al.
Decagonal

M. Boudard et al | International School
' ' = 0Ny
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Stable quasicrystals

i-AIPdMn, growth o aE R
of centimeter size - A S
single grains by .
Bridgman and
Czokralski
methods.

e W. Steurer, i-AIPdMn Laue

M. Boudard et al.
@ (. International School
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Stable quasicrystals

e (Quasicrystals were targeted has non-indexable phases long
ago! Example of the AlCuFe phase diagram.

Al-Cu-Fe phase diagram
1939

920 ALyCulisg

89(-

TEMPERATURE (K)
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Soft condensed matter and QC
Recently, QC have been obtained in soft condensed matter: dodecagonal quasicrystals

(12210)

(13310

Supramolecular dendritic

- - - (24200)
liquid quasicrystals
(23200)
Xianghing Zeng', Goran Ungar', Yongsong Liu', Virgil Percec’, (12100)

Andrés E. Dulcey” & Jamie K. Hobbs’
MATURE | VOL 428 [ 11 MARCH 2004 |

a b
_______ —
{ b b i i =
e | b .l | 2
P e X | . m—
\ B ¥ T & +(24201°)
RN o +(23201°)
i 7 e «=(222005)
“+(1210n%)
(111005
d “r e “(1010n9)
.
TFRe—§ - - <=(00007°)
-
= ,rh: 5 — >4 <« (T07015)
e ® «T770n%)
e HTZ70n%)

«~«2720n%)
«—{(Z370n%)
«(Z370n%)
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Liguid Quasicrystal

e Length scale: 8.1 nm, i.e 10 time metallic alloys

0.05 010 015 020 025 030 035 040 045
q (A"

(12210)

(13310)
(24200)

(23200)

(12100)

Qz=1/4,3/4 ocz=0,1 z=1/2

International School
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Polymeric quasicrystal

k endi
PRL 98, 195502 (2007) PHYSICAL REVIEW LETTERS [T MAY 2007

Polymeric Quasicrystal: Mesoscopic Quasicrystalline Tiling in A BC Star Polymers

Kenichi Ha]n,fashida,l Tomonari Dotera.” Atsushi Takano.' and Yushu Matsushita'

Length scale:
50 nm

International School
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Summary

Quasicrystal is really a new kind of long range order.

Symmetry incompatible with translation and sharp
Bragg peaks

Found in intermetallic compounds but also in soft
condensed matter.
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Diffraction pattern of quasicrystals

e Some general characteristics
e How ‘good’ is the quasicrystal ? True Bragg peak?
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Diffraction pattern of quasicrystals

e i-AlCuFe
e |cosahedral symmetry
e tinflation scaling

e Self-similarity
(from A.P. Tsai)
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Diffraction pattern of quasicrystals

e X-ray diffraction along 5-fold axis. i-AIPdMn. ESRF. (Log | scale)
e Only few very strong Bragg. Tt scaling of position (Fm35).

1010 ErrrrJrrrrrrrr[rrrrprr T
RN 7/11 18/29 :
6 integer 8 £ 2/1 47/76 3
indices 10" ¢ 3/4 . 3
10" £ " i
N/M short o, E o ]
hand notation ~ Z 10° ¢ L
(Gratias etal.) £ 10° F e
10' | _
1000 £ J J L ka
100 E / KUW o UU\*H\H J\J ‘

0 0.5 1 1.5 2 2.5 3 3.5
Qx (2n/a__ Unit)
par 6D
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Aperiodic Crystals

(} International School



Diffraction pattern of quasicrystals

e The intensity "
distribution
depends on the
atomic structure
and structural
quality

e 2-fold scans of i- TR d Dt v f o B 0
ZnMgSc and i-

AlIPdMn 10°

 Very large 10°
number of
reflexions in i-

ZnMgSc 1000
(Ishimasa et al.) “J

©

[N
o
~

Intensity
(=Y
o

1000

10°

Intensity

10 0 0 01

T 1.5 735 3 35 4 4.5_
Qpar (2pi/a unit)
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Quasicrystal perfection: Bragg peak

i-Al69. 8Pd21Mn9 2 Slane grain
Annea 1mg

e High resolution,
coherent setup (I1D20,
ESRF): one speckle

)
E) dQ=10*A1 £~ 10um
8-1 e Rocking curve:
E 0.005° FWHM
<
O
=
c . .
% Unif phason strain:
= __FWHM = b Qper
=~ T 0004

S 00032 F

<

e 0,0024

o

WHM
o o
o o <
o =)
o =
o5} )

% A. Létoublon et al. 0 05 1 15 2 25
Qper (2n/3,Units)
L & r Aperiodic Crvstals




Dynamical diffraction: standing waves

i-AlPdMn

® - ([ e | e Measurement in
— backscattering (1D32)

Crystal

e Al fluorescence

e Modeling with a crude
atomic model

e Yield (n.u.)

innrmalined unitg)

T. Jachs et al, PRL, 82, 1999
F. Schmithusen, Phd thesis

See also J. Gastaldi, J.
Hartwig, ID19, ESRF

EsCenc

Al Fluor

7 BB 287 1875
Energy (keV)

Almost perfect quasiperiodic long range order

: International School
0Ny
Aperiodic Crystals




Summary

 The quasicrystal diffraction pattern displays inflation
properties (tau scaling in the icosahedral case)

 Afew very strong Bragg peaks and a large number of
weak Bragg peaks

 The long range order is as good as in the best
intermetallic alloys: extremely sharp Bragg peaks.
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Atomic structure of quasicrystals

e Real space approach: tilings.
 High dimensional approach: atomic surfaces.

e Both methods have their advantage and drawback.
The high dimensional approach is the most general
one.

 Some characteristics in direct space: the Penrose
tiling.
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Penrose tiling
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Penrose t

No true 5-fold symmetry in direct space; but almost perfect superposition

I with a translation. (Courtesy R. Lifshitz).




Penrose tiling

SN LHANFAL
AR
Q‘J’\"Q/“}‘O.
TS
P
SR
SAITYTET
S H ALK

The Penrose tiling has a
hierarchical structure

Inflation-deflation
properties
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Structure as tiling

e Decorated tiling: example of decagonal AINiCo (see H.
Takakura and M. Mihalkovic lecture)

International School
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The Fibonnacci chain and 1D quasicrystals.

e 1D simple example

e Although there is no symmetry involved, this model
has strong similarities with icosahedral quasicrystals.

International School
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Fibonacci

Number
: A 1 ofpairs
2 e 1
3 Adw dién 2
4 ﬁfL oy R, ) 3
5 A —n"fl : il m——m Al 5
4] Filw #.L i P F i W Him g
7 Mém_dikn  Mimdlw  HE ghim il dedmgitny Al Hew . 13
OO Y ) N O O
8 dnddn i ddndin dinsin akn densbin dibn S diindin dhn Sdn i Min i 71
S U0 10 1 o
SR NN IRINR NN RINRIRIRRINNIRINN N

Form a series of numbers: 1,1, 2, 3,5, 8, 13....
Un=Un-1+Un-2

U, ,/U,,->Ttthe golden mean.

T=2c0s(36)= (1+)/2=1.618...

E International School
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The golden mean

e T=(1+V5)/2=1.618033....
 Related to pentagonal and icosahedral symetry.

L Coordinates of the 5-
T fold axis of the
++%uy,  icosahedron in an
T7 T8 orthonormal basis:
(1,7,0)
xli
e Tisthe solution of x2=x+1; 2= 1+1

e The Fibonnacci series gives approximationtot. 1,1,2,3,5, 8,13,21,34,55. For
instance 3/2=1.5 55/34=1.6176..

* The power of T can be calculated with the Fibonnacci series: ™= U, t+U,_
For instance 1= 3t+2 (this can be generalised to negative power of T)
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The golden mean

 Found in phyllotaxy : number of left and right spirals are two following
Fibonnacci number. Related to seed packing efficiency.

- 0n
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The golden mean

 Found in phyllotaxy : number of left and right spirals are two following
Fibonnacci number. Related to seed packing efficiency.
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The Fibonacci chain.

Two segments (‘tiles’) Land S, L/S=1=1.618...
inflation construction S=>L and L>LS
e S, L, LS, LSL, LSLLS, LSLLSLSL, LSLLSLSLLSLLS...
e IfL/S=1, aperiodically ordered structure.
* Fn=F,_,F,, Concatenation of two preceding ‘words’
e Number of L (S) tiles NL (NS): NL/NS =t
 Local order: no SS or LLL sequence for instance.

@ ( International School
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The Fibonacci chain.

o LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS ...
e Self similarity and Inflation properties:

e If we multiply all vertices by T one obtains the same
Fibonnacci chain. (True also for deflation by 1/t )

L 3 L L 5 L 5 L
r 1f 11 10 1T 1 1
L - ] L ] L o - Q - & o o . a =
! J il Ji IeJl J 1 i Ji )l I
L 5 L L 5 L 5 L L s L L S

e Quasiperiodic order: take any portion of the chain
another one is found nearby. True for any size.

o LSCLSLSLDSITSLSLLSLSLLSLLSLSLLSLILS....
o LSLLSKSLLSLLSLSILSLSTLSLLSLSLESLLS....

@ ( International School
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The Fibonacci chain.

o LSLLSLSLLSLLSLSLLSLSLLSLLSLSLLSLLS ...
e Diffraction pattern: from the general expression:
Position of the nt" point is given by:

aln n
|_n = na+LJ LJ Is the Integer part
T

Tl T
e This gives two length scale: 1 and t

a and a+a/t=a+a(t-1)=at

e This definition can be used to compute de diffraction pattern: Bragg peaks
and position defined by: 1

kh,h' = \/72
avl+r
@ ( International School
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Fibonnacci chain diffraction pattern

1 .
kh,h' — > (h + Th )
avl+r
5 = e Two irrational
mpar)} 1 length scale:
10 = 5 1
{ = = = 0.5257
V147
05F )
r R - 'Z-
I S 2% S a8 =(0.8506
OfF— ] l | l |J_L :TT T \/1+2-2
N e 2-D embedding of
i 2 3 4 .
Q por (272/a unit) the diffraction
p a tte r n International School
( -
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2D embedding of the diffraction pattern
Ky = . (h+2n’)

a1+7
(D—o . . . . . - L] . ® —
T |_I|1' T I I’-:
I.":H‘: E- T . . . . . . . . |~
Ty Wy —
— o = 'Qper
= 9 ] <+ |-
% -
et ﬂ-‘“ﬁ
L
ol < “IN
o a
= =
=8
—- Z
(=) o
M ul |
o Ll L1 il L1l
0 S5 10

0N __
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2-D embedding of the Fibonacci chain
E,

Square lattice: basis (el,e2)

E .- (or external space), Physical space , with irrational slope 1/t

E . (or internal space)

E International School
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2-D embedding

E,

(e,,e,) basis of the square
lattice, parameter a.

Projectionon E_, and E ., (E;
and E_,).

tga=1/t a=31.7..°
cos(a) = t/V(2+1)=0.8506...
sin(a) = 1/V(2+t)=0.5257...

e, and e, projects on two length
tasin(a) and asin(a) on the
parallel space.

= 0N _
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2-D embedding of the Fibonacci chain

Atomic surfaces along E__. decorate the square lattice

per

‘Atomic .\ .
surfaces’ ™

Length of the atomic surface: projection of the square lattice

along E,. : L = a(1+t)/V(2+ 1)=a.1.376...

E International School
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2-D Embedding

e 1D QCis obtained as a section of the 2D decorated QC

International School
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2-D Embedding: the ‘strip’ method

MRS
NN
BRI
vv

Selection of lattice points in the strip, then projection.

iiiiiiiiiiiiiii School
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2-D embedding of the Fibonacci chain




2-D embedding of the Fibonacci chain

NN L

The 2-D Unit cell
contains all the
information on
local order.

Point density =
I‘per/a2

= 0N _
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Local environments

NN
N

a distance L on
the right?

=™ 0n
Aperiodic Crystals
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Local environments

Point followed
by L on the
right

Displacement
in 2D is e,
Projectionis L
in parallel
space and S in
perp space

0N

( International School
Aperiodic Crystals



Local environments

)(1pe X

lpar

-e,= (X

® Existence domain of the
configuration L:

X 1 Intersection between the atomic

lpar’ 1per)

surface and its copy translated
by X

lper -

-
Aperiodic Crystals
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Local environment.

e Existence domain: The size of the
intersection is proportional to the
frequency of the configuration in
the infinite structure

e Case of the
configuration S

PR AV / \V/ \
€2~ Wopars Noper!
The perp translation is

now X, e,

The existence domain is

smaller of a factor t

( International School
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Local environment of the Fibonacci chain

- e First distances
either Lor S

e Related to the
‘connection’ of
atomic surfaces.

1 L E,, ® Proportion of L
Yttt T t——*andSisrelated

| / B J to respective

; length of
occupation
domain here in
the ration 1 and t

="0n__
Aperiodic Crystals
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Exercice

e Demonstrate, using the 2D representation, that the

sequence LLL does not exists in the Fibonacci chain.
tEper

Epé}

E International School
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Exercice

e Demonstrate, using the 2D representation, that the
sequence LLL does not exists in the Fibonacci chain.

F

\| | | | ‘
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Exercice

e Compare the 2 generated QC

* If infinity: cannot be §é,llo|8rerimposed, but there is a
translation allowing fo superimpose any patch

e Same diffraction (onl},@ pha@h-f )

! | T
é ! Epar
E International School
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General 1D quasiperiodic structure

1D oL.LoSo L.L.S.L.S.L.L.S.J

nternational School
’ 0N __
Aperiodic Crystals




General 1D quasiperiodic structure
Length (shape) of the AS.

1D ® ©e o 060 o 00 o .......J
Tternational School
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General 1D quasiperiodic structure
Length (shape) of the AS. Decoration of unit cell

T
LR
LEINNN

LS "G NN

1D & ® ® 0000 © 0000 0 0000 O O 000

( International School
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General 1D quasiperiodic structure
Parallel component of the AS
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St

Relaxation of local
environment

Can be a continuous or
discontinuous displacement.

Relaxation can be associated
with local environments and
used in the further
refinement..
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Summary

e The 1D quasicrystal is obtained by a section of a
decorated square lattice.

e Decoration by atomic surfaces lying in the
perpendicular space.

e 2D image of the 1D quasicrystal allows to understand
its local environment: distances and frequencies

 Frequency given by the size of the existence domain
obtained by geometric Xperp translation.

e QC characterized by: position and shape of the
atomic surfaces. Their chemical decoration. Parallel
component related to structure relaxation
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Diffraction pattern of the 1D QC

1- Diffraction pattern of the 2D decorated lattice:

There are i atomic surfaces (AS) at positions Ri which decorate
the 2D square lattice.

The electron or atomic density can be expressed as the
convolution product between the lattice and the decoration.
Gi(R,,) represents the shape function of the AS
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Diffraction Pattern

FT= FT(lattice).FT(decoration)

Reciprocal space: G(H_. ) is the FT of the atomic surface or

occupation domain.

per

1 -
F(K) =o(K — Hnl,n?)-v Z Gi,(H,e, )exp(2miH, 1 0. R;)

FT(lattice) is a square lattice ?'parameter 1/a
Reciprocal space also decomposes in two sunspaces:
parallel and perpendicular space.
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Diffraction Pattern: Fibonacci chain

H,. -\ | 71 nl
Hy. ) a/2F7\17)\n2

F(K) — 5(K_Hnl,n2)alzG(Hper)

SiN(7Q per L)
ﬂQperL

G(H per) =L

L is the length of the AS
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Diffraction Pattern: Fibonacci chain

Intensity is given by G(Qper)
Strong intensity for small values of

Qperp
n1l,n2 Fibonacci numbers
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Diffraction pattern

2- Projection of the diffraction pattern to 1D.
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2-D Diffraction pattern Fihonacci Diffraction nattern
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e The 1D diffraction pattern is
dense. Infinite number of Braggs
e But above a certain threshold
only a finite number of Bragg
peaks in a given Q range :
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e T scaling of the position and
intensities: (1, 1), (2,1), (3,2)...
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Diffraction pattern

(Hmr) B 1 (71) (nl)

Hper av/2+7 \1 7))\ n2

e Compare the parallel and
perpendicular component
of (1,1) and (2,1) - -

e Par:t+1 and 2t+1=t(t+1) |

Per: -1+t and -2+t=-(-1+1)/t

T scaling in par and -1/t in
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Fibonacci Diffraction pattern
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Summary

e 1D diffraction pattern is the projection of the 2D one

* Indexing(n, n,)and (H ., H,.).

 FT contains two terms FT of the AS + interferences
F(K)=0(K—H,;..2) Z Gi(H,e Jexp(2riH, 1 2.R;)

e Large intensity for smaII Hper component

 The 1D diffraction pattern is densely filled by Bragg
peaks, but only a finite number above a threshold.

e T scaling
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Structure determination

e From diffraction data to a structural model. 1D
example.

1- Indexing the diffraction pattern.
How to chose the lattice parameter and indices ?

- Strong Bragg peaks should have a small H
component.

- List of indices to be compared to the diffraction
pattern

- Problem of the t scaling.
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Indexing

e Lattice parameter

ambiguity within tau | |
e Choice from local L 3
order configuration &
(pseudo tile, ol = B g :
distances ...) j S
& oo i 1‘ || .,..LT!.,. .
0 5 10
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Fourier map

e 2- Phasing structure factors

e 2D Patterson analysis : gives the position and rough
shape of the AS: first phasing

 Phase reconstruction: maximum charge density (V.
Elser), low density elimination (H. Takakura), charge

flipping (L. Palatinus). Allows to compute a density
map, much easier to interpret than the Patterson
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Example of 1D QC
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‘Split positions’ due to Fourier truncation effect: two
sites with partial occupancy and short distance
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Modeling

* Modeling is necessary

 Unlike modulated and composites phase there is no
general procedure.

e ‘Hand made’ building of the model
e Some general rules:
- Chemistry, density and chemical composition
- Short distances and local environment
- Periodic approximant structure
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Quasicrystal and approximant

1/1 LSLSLS  a,,;=T+1
2/1 LSLLSL  a,,=2t+1=? a,,

*

e Rational tilt of Epar
generates a periodic
approximant : slope 1/1,
2/1,3/2... instead of
1=1.618...

e Approximant and QC
share the same local envt
or clusters

e Series of approximant
with larger and larger unit
cells

e CdYb system: 1/1 and 2/1
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Quasicrystal and approximant

e The correct formulation
is actually a shear strain of
the periodic lattice.

e Strain along the
perpendicular space:
phason strain

e Tis replaced by a
Fibbonacci approximant:
1/1, 2/1, 3/2

0 ! > 3 4 X 1
. par | _ a 4 nlj
3/2 approximant X per V2+7l-1 7)\n,
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Similar diffraction pattern
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Similar diffraction pattern
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Similar diffraction pattern

® Intensity(2/1)
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Phason strain
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Fibonacci planes
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Pha§gq strain
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Closeness condition

e Phason degree of freedom

e Free energy is invariant under a
rigid translation along Eper
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Closeness condition

E,..  Phason degree of freedom

e Free energy is invariant under a
rigid translation along Eper

e S—>SL

e Atomic surfaces are connected (no ‘creation or anhinilation of atom).

e Constraint very difficult to fulfill in general cases.
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eWhich atomic surfaces
for matching rules??

[\  Icosahedral bounded by 2-
4 fold planes (Katz and
Gratias). Set of polyhedra
to be used.

e Decagonal Cluster covering (Gummelt,
Steinhardt) is a rephrasing of matching rules. Deca
phase (Abe et al)
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Summary

e Structural solution:

* |ndexing and space group

e Phasing (or Patterson analysis)

e Fourier map: position and rough shape of the AS
e Modeling and refinement
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Icosahedral symmetry
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e Diffraction pattern indexed with a linear combination
of 6 Vectors (5-fold axis of the icosahedron)

e Periodicity in 6D space: 6D cube
e Decomposed in two 3D spaces: paralell (or physical

I International School
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3-D Penrose tiling

e 3D tiling with icosahedral symmetry.

e 2 tiles, with edges // to a 5-fold axis.

j@*
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3D Penrose tiling

Section of a 6D cube decorated bv o
[ ] [ ] J O Wik OYVIN o O S Ui U b W w, L

triacontahedron (Atomic surface) in perp space

2-fold section of the 6D cube
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Triacontahedron lying in
Perpendicular space

2-fold trace of thj Triaconta
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3D Penrose tiling

Section of a 6D cube decorated bv o
[ ] [ ] J O Wik WYVIN o O S OUWI U O W w, L

triacontahedron (Atomic surface)

2-fold section of the 6D cube
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5-fold section of the 6D cube

5-fold section of the 6D cube

e 5-fold rational section 20 \ \

e Information on 5-fold axis.

» Allows to visualise three 10}
Wickoff position of the 6D
cube, possible for the
decoration:

D[ = [or1]
Origin: (000000) \\ \

Body center: 0.5(111111) -4
Mide edge: 0.5(100000) -t 2\

410 0 10 (A) 20
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Icosahedral space groups

 There are different space group, related to the
icosahedral Bravais lattice

* This give extinction conditions.

e Structure solution is following the same process as
the 1D example

e Complex shape of atomic surfaces but related to
local environments

* Real space modeling is also complementary
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Conclusion

 The high dimensional space description is a powerful
tool for the structure analysis of QC

 No general algorithm, but strong connection
between the high dim space and the local
environment

e Position, shape, chemical nature and local relaxation
of the atomic surfaces : refinement is possible.
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