

26 September - 2 October 2010, Carqueiranne, France

Superspace symmetry and superspace groups

Sander van Smaalen Laboratory of Crystallography University of Bayreuth, Germany

Disclaimer and copyright notice

Copyright 2010 Sander van Smaalen for this compilation.

This compilation is the collection of sheets of a presentation at the "International School on Aperiodic Crystals," 26 September – 2 October 2010 in Carqueiranne, France. Reproduction or redistribution of this compilation or parts of it are not allowed.

This compilation may contain copyrighted material. The compilation may not contain complete references to sources of materials used in it. It is the responsibility of the reader to provide proper citations, if he or she refers to material in this compilation.

Symmetry of matter is required for

Determination of crystal structures (avoiding dependent parameters)

Understanding physical properties

Thermal expansion

Elasticity

Non-linear crystals (inversion center)

Neumann's Principle:

Symmetries of a physical property of a material include the crystal point group, but may include more symmetry

Symmetry of aperiodic crystals

- Aperiodic crystals lack 3D translational symmetry
- Therefore, they cannot have rotational symmetry
- Aperiodic crystals are an ordered state of matter:
 - we call them crystalline
 - **Diffraction gives Bragg reflections**
- The diffraction pattern possesses 3D point symmetry Eventually assign this symmetry to the aperiodic crystal
- structure (superspace groups)

Point group symmetries in 3D space

Snow crystal 6/mmm Crystallographic point groups Modulated and composite crystals http://www.SnowCrystals.com 7-fold protein n/mmm groups for n = 5,7,8,...

Quasicrystals

PDB: 1TZO

icosahedron 53m

Quasicrystals

Diffraction by a modulated crystal

 $\mathbf{H} = (h_1 + m\sigma_1) \mathbf{a}_1^* + (h_2 + m\sigma_2) \mathbf{a}_2^* + (h_3 + m\sigma_3) \mathbf{a}_3^*$

S. van Smaalen: Incommensurate Crystallography, Oxford University Press (2007)

Diffraction symmetry of an incommensurately modulated crystal

Main reflections possess point symmetry according to one of the 32 crystal classes

Rotational operator *R* transforms

main reflection into main reflection

satellite reflection of order *m* into satellite of order *m*

1D modulation: $R \mathbf{q} \rightarrow \varepsilon \mathbf{q}$ with $\varepsilon = \pm 1$

 $\mathbf{q} = \sigma_1 \mathbf{a}_1^* + \sigma_2 \mathbf{a}_2^* + \sigma_3 \mathbf{a}_3^* \rightarrow (\sigma_1, \sigma_2, \sigma_3)$

Condition for possible modulation wave vectors:

 $(\sigma_1, \sigma_2, \sigma_3) R^{-1} - \varepsilon^{-1} (\sigma_1, \sigma_2, \sigma_3) = (0, 0, 0)$

Implications of mirror symmetry for q

$$R = R^{-1} = m_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \overline{1} \end{pmatrix}$$

$$(\sigma_{1} \ \sigma_{2} \ \sigma_{3})R^{-1} - \varepsilon^{-1}(\sigma_{1} \ \sigma_{2} \ \sigma_{3}) = (0 \ 0 \ 0)$$

m_z with
$$\varepsilon = 1$$
: $(\sigma_1 \ \sigma_2 \ -\sigma_3) - (\sigma_1 \ \sigma_2 \ \sigma_3) = (0 \ 0 \ 2\sigma_3) \equiv (0 \ 0 \ 0)$
 $\mathbf{q} = (\sigma_1, \sigma_2, 0)$

 m_z with $\varepsilon = -1$: $(\sigma_1 \ \sigma_2 \ -\sigma_3) + (\sigma_1 \ \sigma_2 \ \sigma_3) = (2\sigma_1 \ 2\sigma_2 \ 0) \equiv (0 \ 0 \ 0)$

$$\mathbf{q} = (0, 0, \sigma_3)$$

S. van Smaalen: Incommensurate Crystallography, Oxford University Press (2007)

Admissible incommensurate wave vectors for 1D modulations

Triclinic	$(\sigma_1, \sigma_2, \sigma_3)$
Monoclinic	(σ ₁ , σ ₂ , 0)
	(0, 0, σ ₃)
Orthorhombic	(σ ₁ , 0, 0)
	(0, σ ₂ , 0)
	(0, 0, σ ₃)

Tetragonal	(0, 0, σ ₃)
Trigonal	(0, 0, σ ₃)
Hexagonal	(0, 0, σ ₃)
Cubic	none

Umklapp terms

S. van Smaalen: Incommensurate Crystallography, Oxford University Press (2007)

Admissible incommensurate wave vectors with non-zero rational components (1D)

Monoclinic—P	(σ ₁ , σ ₂ , 1/2)	(1/2, 0, σ ₃)	(0, 1/2, σ ₃)
Monoclinic—B		(1/2, 0, σ ₃)	
Monoclinic—A			(0, 1/2, σ ₃)
Orthorhombic—P	(1/2, 0, σ ₃)	(0, 1/2, σ ₃)	(1/2, 1/2, σ ₃)
Orthorhombic—A	(1/2, 0, σ ₃)		
Orthorhombic—B		(0, 1/2, σ ₃)	
Orthorhombic—C	(1, 0, σ ₃)	(0, 1, σ ₃)	
Orthorhombic—F	(1, 0, σ ₃)	(0, 1, σ ₃)	
Tetragonal—P	(1/2, 1/2, σ ₃)		
Trigonal—P	(1/3, 1/3, σ ₃)		

Conclusions—point symmetry

Diffraction symmetry is a 3D point group Point symmetry restricts admissible modulation wave vectors $\mathbf{q} = \mathbf{q}_r + \mathbf{q}_i$ Combination of 3D point group and q vectors leads to Bravais classes of superspace groups

What about symmetry of the crystal structure?

Symmetry operators and coordinates

$$\{R \mid \mathbf{v}\} \qquad R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix} \qquad \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ physical space coordinates } \mathbf{S} = \begin{pmatrix} S_1 & S_2 & S_3 \end{pmatrix} \text{ space vector }$$

 $\{R \mid \mathbf{v}\} : \mathbf{x} \longrightarrow R \mathbf{x} + \mathbf{v} \qquad \{R \mid \mathbf{v}\} : \mathbf{S} \longrightarrow \mathbf{S} R^{-1}$ $\{R \mid \mathbf{v}\}^{-1} = \{R^{-1} \mid -R^{-1} \mathbf{v}\}$

 $\{E \mid \mathbf{T}\}$ lattice translation

Symmetry operator $\{R \mid v\}$ in direct and reciprocal space

$$\begin{pmatrix} \mathbf{x'}_1 \\ \mathbf{x'}_2 \\ \mathbf{x'}_3 \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} + \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$

$$\begin{pmatrix} S'_{1} \\ S'_{2} \\ S'_{3} \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}^{t,-1} \begin{pmatrix} S_{1} \\ S_{2} \\ S_{3} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{a}'_{1} \\ \mathbf{a}'_{2} \\ \mathbf{a}'_{3} \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}^{t,-1} \begin{pmatrix} \mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \mathbf{a}_{3} \end{pmatrix}; \qquad \begin{pmatrix} \mathbf{a}'^{*}_{1} \\ \mathbf{a}'^{*}_{2} \\ \mathbf{a}'^{*}_{3} \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix} \begin{pmatrix} \mathbf{a}^{*}_{1} \\ \mathbf{a}^{*}_{2} \\ \mathbf{a}^{*}_{3} \end{pmatrix}$$

Lack of translational symmetry in physical space

Required phase shift $\Delta \overline{X}_{s4}$

 $\Delta \, \overline{\mathbf{X}}_{s4} = -\mathbf{q} \cdot \mathbf{T} = -\sigma_2 \, n_2 \, (\text{mod 1})$

Translations in superspace

Relations between symmetry in physical space and superspace

R is point symmetry in 3D space implies symmetry operators R_s in superspace

$$\mathbf{H} = h_1 \, \mathbf{a}_1^* + h_2 \, \mathbf{a}_2^* + h_3 \, \mathbf{a}_3^* + h_4 \, \mathbf{a}_4^*$$

$$\mathbf{a}_4^* = \mathbf{q} = \sigma_1 \, \mathbf{a}_1^* + \sigma_2 \, \mathbf{a}_2^* + \sigma_3 \, \mathbf{a}_3^* \qquad \text{Modulation wave vector}$$

$$R_{s} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ n_{1}^{*} & n_{2}^{*} & n_{3}^{*} & \varepsilon \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ R & 0 \\ 0 & 0 \\ \mathbf{n}^{*} & \varepsilon \end{pmatrix} = (R, \varepsilon)$$

 $(\sigma_1 \ \sigma_2 \ \sigma_3)R - \varepsilon(\sigma_1 \ \sigma_2 \ \sigma_3) = (n_1^* \ n_2^* \ n_3^*)$ with $\varepsilon = \pm 1$

Transformation of reflection indices in superspace

$$\mathbf{H} = h_1 \mathbf{a}_1^* + h_2 \mathbf{a}_2^* + h_3 \mathbf{a}_3^* + h_4 \mathbf{a}_4^*$$
$$\mathbf{H} = h_1 \mathbf{a}_1^* + h_2 \mathbf{a}_2^* + h_3 \mathbf{a}_3^* + h_4 \mathbf{a}_4^*$$

H and **H**' describe equivalent reflections: $F(\mathbf{H}) = F(\mathbf{H}')$

$$(R_{s})^{-1} = \begin{pmatrix} & & & 0 \\ & R^{-1} & & 0 \\ & & & 0 \\ & & & 0 \\ & -\varepsilon^{-1}\mathbf{n}^{*}R^{-1} & \varepsilon^{-1} \end{pmatrix} = \begin{pmatrix} & & 0 \\ & R^{-1} & 0 \\ & & 0 \\ & & & 0 \\ & \mathbf{m}^{*} & \varepsilon^{-1} \end{pmatrix}$$

 $(\sigma_1 \ \sigma_2 \ \sigma_3)R^{-1} - \varepsilon^{-1}(\sigma_1 \ \sigma_2 \ \sigma_3) = (m_1^* \ m_2^* \ m_3^*)$

 $(h'_1 h'_2 h'_3 h'_4) = (h_1 h_2 h_3 h_4)(R_s)^{-1}$

Transformation of coordinates by a symmetry operator of superspace

$$\mathbf{x} = x_1 \, \mathbf{a}_1 + x_2 \, \mathbf{a}_2 + x_3 \, \mathbf{a}_3$$
$$\mathbf{x}_s = x_{s1} \, \mathbf{a}_{s1} + x_{s2} \, \mathbf{a}_{s2} + x_{s3} \, \mathbf{a}_{s3} + x_{s4} \, \mathbf{a}_{s4}$$
$$x_i = x_{si} \text{ for } i = 1, 2, 3$$

 $\{R_s \mid \mathbf{v}_s\}$

$$\begin{pmatrix} \mathbf{x}'_{s1} \\ \mathbf{x}'_{s2} \\ \mathbf{x}'_{s3} \\ \mathbf{x}'_{s4} \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ n_{1}^{*} & n_{2}^{*} & n_{3}^{*} & \varepsilon \end{pmatrix} \begin{pmatrix} \mathbf{x}_{s1} \\ \mathbf{x}_{s2} \\ \mathbf{x}_{s3} \\ \mathbf{x}_{s4} \end{pmatrix} + \begin{pmatrix} \mathbf{v}_{s1} \\ \mathbf{v}_{s2} \\ \mathbf{v}_{s3} \\ \mathbf{v}_{s4} \end{pmatrix}$$

Transformation of atoms in superspace

 $\mathbf{a}_{\mathbf{s}'}$

$$R_{s} = (R, \varepsilon) = (E, 1): (x, y, z, t) \text{ Identity}$$

$$(i, -1): (-x, -y, -z, -t) \text{ inversion}$$

$$\begin{pmatrix} x'_{s1} \\ x'_{s2} \\ x'_{s3} \\ x'_{s4} \end{pmatrix} = \begin{pmatrix} \overline{1} & 0 & 0 & 0 \\ 0 & \overline{1} & 0 & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} x_{s1} \\ x_{s2} \\ x_{s3} \\ x_{s4} \end{pmatrix}; \begin{pmatrix} v_{s1}^{0} \\ v_{s2}^{0} \\ v_{s3}^{0} \\ v_{s4}^{0} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ a_{s4} \end{pmatrix}$$

inversion center at the origin

Origin-dependent translational components

$$R_{s} = (R, \varepsilon) = (i, -1)$$
 inversion

$$\begin{pmatrix} \mathbf{X}'_{s1} \\ \mathbf{X}'_{s2} \\ \mathbf{X}'_{s3} \\ \mathbf{X}'_{s4} \end{pmatrix} = \begin{pmatrix} \overline{1} & 0 & 0 & 0 \\ 0 & \overline{1} & 0 & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix} \begin{pmatrix} \mathbf{X}_{s1} \\ \mathbf{X}_{s2} \\ \mathbf{X}_{s3} \\ \mathbf{X}_{s4} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \mathbf{V}_{s4} \end{pmatrix}$$

$$(i, -1): \quad (-x, -y, -z, v_{s4}^0 - t)$$

inversion center at $\frac{1}{2}v_{s4}^0$ along x_{s4}

Intrinsic translations

$$\{R_{s} | \mathbf{v}_{s}\}^{n} = \{R_{s}^{n} | R_{s}^{n-1} \mathbf{v}_{s} + \dots + \mathbf{v}_{s}\} = \{E_{s} | \mathbf{L}_{s}\}$$

for $R_s^n = E_s$

Solutions $\begin{pmatrix} V_{s1} \\ V_{s2} \\ V_{s3} \\ V \end{pmatrix} \neq \begin{pmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \end{pmatrix}$ give intrinsic translations

Translational components of a superspace mirror plane

$$R_{s} = (m_{z}, -1): (x_{s1}, x_{s2}, -x_{s4}, -x_{s4}) \implies \mathbf{q} = (0, 0, \sigma_{3})$$

$$n = 2 \implies R_{s} \mathbf{v}_{s} + \mathbf{v}_{s} = \mathbf{L}_{s}$$

$$\{R_{s} \mid \mathbf{v}_{s}\} = \{m_{z}, -1 \mid v_{s1}, v_{s2}, v_{s3}, v_{s4}\} \qquad (m_{z}, -1) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix}$$

 $\begin{cases} v_{sk} = 0, 1/2 \pmod{1} & k = 1, 2 \text{ intrinsic translational components} \\ v_{sk} : no restrictions & k = 3, 4 \text{ origin - dependent components} \end{cases}$

Notation of intrinsic translations

3D-part of translation by the usual symbols 2_1 screw axis, *a*-glide, *b*-glide, *c*-glide, *n*-glide and *d*-glide operators Intrinsic translation along the additional axes by symbol:

V _{s4}	0	1/2	1/3	-1/3	1/4	-1/4	1/6	-1/6
symbol	0	S	t	\overline{t}	q	\overline{q}	h	ħ

$$(m,-1)$$
 $(0, 0, 0, 0)$ $(x, y, -z, -t)$ mirror $(a,-1)$ $(1/2, 0, 0, 0)$ $(1/2+x, y, -z, -t)$ a -glide $(b,-1)$ $(0, 1/2, 0, 0)$ $(x, 1/2+y, -z, -t)$ b -glide $(n,-1)$ $(1/2, 1/2, 0, 0)$ $(1/2+x, 1/2+y, -z, -t)$ n -glide

Exercise: translational components for a twofold axis in superspace

$$R_{s} = (2^{z}, 1): (-x_{s1}, -x_{s2}, x_{s4}, x_{s4})$$

$$\Rightarrow \mathbf{q} = (0, 0, \sigma_{3}) \qquad (2^{z}, 1) = \begin{pmatrix} \overline{1} & 0 & 0 & 0 \\ 0 & \overline{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\{R_{s} \mid \mathbf{v}_{s}\} = \{2^{z}, 1 \mid v_{s1}, v_{s2}, v_{s3}, v_{s4}\}$$

$$\{R_{s} | \mathbf{v}_{s}\}^{n} = \{R_{s}^{n} | R_{s}^{n-1} \mathbf{v}_{s} + \dots + \mathbf{v}_{s}\} = \{E_{s} | \mathbf{L}_{s}\}$$

Solution: translational components for a twofold axis in superspace

$$\{R_{s} \mid \mathbf{v}_{s}\} = \{2^{z}, 1 \mid v_{s1}, v_{s2}, v_{s3}, v_{s4}\} \qquad (2^{z}, 1): (-x_{s1}, -x_{s2}, x_{s4}, x_{s4})$$
$$n = 2: R_{s} \mathbf{v}_{s} + \mathbf{v}_{s} = \mathbf{L}_{s} \qquad (0, 0, 2v_{s3}, 2v_{s4}) = (I_{1}, I_{2}, I_{3}, I_{4})$$

$$\begin{split} l_1 &= l_2 = 0 \quad \& \quad v_{s1}, \ v_{s2} : & \text{no restrictions} \\ & \text{origin-dependent components} \\ l_3, \ l_4 &= 0, 1, \ldots \Rightarrow v_{s3}, \ v_{s4} = 0, \ 1/2 \ (\text{mod } 1) \\ & \text{intrinsic translational components} \end{split}$$

Twofold screw axes in superspace groups

Point-symmetry operator symbol: (2,1) Superspace group symmetry operator symbol:

$$(2, 0)$$
 $(0, 0, 0, 0)$ $(-x, -y, z, t)$ twofold rotation $(2_1, 0)$ $(0, 0, 1/2, 0)$ $(-x, -y, 1/2+z, t)$ screw $(2, s)$ $(0, 0.5, 0, 1/2)$ $(-x, -y, z, 1/2+t)$ screw $(2_1, s)$ $(0, 0, 1/2, 1/2)$ $(-x, -y, 1/2+z, 1/2+t)$ screw

$$(2^{z}, s): (v_{s1} - x_{s1}, v_{s2} - x_{s2}, x_{s3}, 1/2 + x_{s4})$$

$$(2_1^z, s): (-x_{s1}, 0.5 - x_{s2}, 1/2 + x_{s3}, 1/2 + x_{s4})$$

Equivalence of superspace groups

Coordinate transformation Q_s provides an alternative unit cell in superspace

 Q_s is unimodular (3+d)x(3+d) matrix \Rightarrow space groups

 Q_s is (3,d)-reduced (of the same type as symmetry operators) \Rightarrow superspace groups

$$\begin{pmatrix} \mathbf{a}'_{s1} \\ \mathbf{a}'_{s2} \\ \mathbf{a}'_{s3} \\ \mathbf{a}'_{s4}^* \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & Q_{13} & 0 \\ Q_{21} & Q_{22} & Q_{23} & 0 \\ Q_{31} & Q_{32} & Q_{33} & 0 \\ n_1^* & n_2^* & n_3^* & Q_{44} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{s1} \\ \mathbf{a}_{s2} \\ \mathbf{a}_{s3}^* \\ \mathbf{a}_{s4}^* \end{pmatrix}$$

Example of equivalence in 4D and (3+1)D spaces

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \overline{1} & 0 & 0 & 0 \\ 0 & \overline{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

 $(m_z, -1) \Leftrightarrow (2^z, 1)$ as 4D space group $(m_z, -1) \neq (2^z, 1)$ as (3+1)D superspace group, because Q_s is unimodular but not in (3,1)-reduced form

Sources of superspace group information

(3+1)D superspace groups

De Wolff, Janssen & Janner (1981) Acta Cryst. A **37**, 625; IT-Vol. C Orlov & Chapuis (2005) at http://superspace.epfl.ch

(3+d)D Bravais classes (d = 1, 2, 3)

Janner, Janssen & De Wolff (1983) Acta Cryst A 39, 658; IT-Vol. C

(3+d)D superspace groups (d = 1, 2, 3)

Yamamoto (2005) at http://quasi.nims.go.jp/yamamoto/spgr.html NEW: Harold Stokes, Branton Campbell & S. van Smaalen (2010) submitted to Acta Crystallogr. A

Tables and WEB tool "SSG(3+d)D"

Extended information and numerous corrections for d = 2, 3

The number of (super-)space groups

Classification		Dimension of space or superspace					
	1	2	3	4	3+1	3+2	3+3
Bravais lattices	1	5	14	64	24	83	215
Crystal classes	2	10	32	227	31		
Space groups	2	17	219	4783	755	3338	12584

$$\begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ n_1^* & n_2^* & n_3^* & \varepsilon \end{pmatrix}$$

compare 28 927 922 space groups of dimension six

Stokes, Campbell & van Smaalen, submitted to Acta Cryst. A (2010): SSG(3+d)D

Numbers and symbols for superspace groups

Bravais classes as *d*.sequence number Examples: 1.24 2.83 3.215

Superspace group 51.3.122.769 is the 769th superspace group with basic space group No. 51 it belongs to Bravais class 3.122

Pcmm(α_1 , β_1 , 0)000(- α_1 , β_1 , 0)00s(0, 0, γ_2)0s0

Symbol ambiguity and symbol degeneracy

Symbols for superspace groups specify generators The symbol is not unique – already so for 3D space groups No. 23 *I222* and No. 24 $I2_12_12_1$ both contain 2 and 2_1 axes Eight valid symbols for either group: *I222 I222 I222 I22 I22*

I222 "Origin at intersection of 222"

 $I2_12_12_1$ "Origin at midpoint of three non-intersecting pairs of parallel 2 axes"

Choice: simplest symbol for symmorphic space group Problem much more profound for superspace groups

Symbols for superspace groups

SSG(3+d)D has formulated a series of conventions and rules leading to a unique symbol for superspace groups of dimension (3+d), d = 1, 2, 3.

It is advised to always specify the symmetry operators rather than to rely on symbols. Even more so, because often a nonstandard setting of the SSG is used.

Symbol of SSG depends on a mixture of the BSG setting and SCG setting of the superspace group.

54.2.29.32 *Pbcb*(0, β_1 , 0)000(0, 0, γ_2)s00 Intrinsic translations from reflection conditions in SCG setting.

SSG(3+d)D: 11.1.6.4 P2₁/m(1/2,0,γ)00

Superspace group: 11.1.6.4 P2_1/m(1/2,0,g)00 [Y:1.37] **Bravais class:** 1.6 P2/m(1/2,0,g) [JJdW:1.6] **Transformation to supercentered setting:** A1=2a1+a4, A2=a2, A3=a3, A4=a4

BASIC SPACE GROUP SETTING Modulation vectors: q1=(1/2,0,g)Centering: (0,0,0,0)Non-lattice generators: (-x,-y,z+1/2,-x+t); (x,y,-z+1/2,x-t)Non-lattice operators: (x,y,z,t); (-x,-y,z+1/2,-x+t); (-x,-y,-z,-t); (x,y,-z+1/2,x-t)

SUPERCENTERED SETTING Modulation vectors: Q1=(0,0,G), where G=g Centering: (0,0,0,0); (1/2,0,0,1/2)Non-lattice generators: (-X,-Y,Z+1/2,T); (X,Y,-Z+1/2,-T)Non-lattice operators: (X,Y,Z,T); (-X,-Y,Z+1/2,T); (-X,-Y,-Z,-T); (X,Y,-Z+1/2,-T)Reflection conditions: HKLM:H+M=2n; 00LM:L=2n Stokes, Campbell & van Smaalen, submitted to Acta Cryst. A (2010): SSG(3+d)D

35.2.24.5 Cmm2(1,0, γ_1)000(0,0, γ_2)000

Superspace group: 35.2.24.5 Cmm2(1,0,g1)000(0,0,g2)000 [Y:2.764] **Bravais class:** 2.24 Cmmm(1,0,g1)(0,0,g2) [JJdW:2.24] **Transformation to supercentered setting:** A1=a1+a4, A2=a2, A3=a3, A4=a4, A5=a5

BASIC SPACE GROUP SETTING

Modulation vectors: q1=(1,0,g1), q2=(0,0,g2) Centering: (0,0,0,0,0); (1/2,1/2,0,0,0) Non-lattice generators: (-x,y,z,-2x+t,u); (x,-y,z,t,u); (-x,-y,z,-2x+t,u) Non-lattice operators: (x,y,z,t,u); (-x,-y,z,-2x+t,u); (-x,y,z,-2x+t,u); (x,-y,z,t,u)

SUPERCENTERED SETTING

Modulation vectors: Q1=(0,0,G1), Q2=(0,0,G2), where G1=g1, G2=g2 Centering: (0,0,0,0,0); (1/2,1/2,0,1/2,0) Non-lattice generators: (-X,Y,Z,T,U); (X,-Y,Z,T,U); (-X,-Y,Z,T,U) Non-lattice operators: (X,Y,Z,T,U); (-X,-Y,Z,T,U); (-X,Y,Z,T,U); (X,-Y,Z,T,U)

Reflection conditions: HKLMN:H+K+M=2n Stokes, Campbell & van Smaalen, submitted to Acta Cryst. A (2010): SSG(3+d)D

221.3.210.7 Pm-3m($0,\beta,\beta$)000($\beta,0,\beta$)000($\beta,\beta,0$)000

Superspace group: 221.3.210.7 Pm-3m(0,b,b)000(b,0,b)000(b,b,0)000 [Y:3.11160] **Bravais class:** 3.210 Pm-3m(0,b,b)(b,0,b)(b,0,0) [JJdW:3.212] **Transformation to supercentered setting:** A1=a1, A2=a2, A3=a3, A4=a5+a6, A5=a4+a6, A6=a4+a5

BASIC SPACE GROUP SETTING

Modulation vectors: q1=(0,b,b), q2=(b,0,b), q3=(b,b,0)Centering: (0,0,0,0,0,0)Non-lattice generators: (x,y,-z,-u+v,-t+v,v); (-z,-x,-y,-v,-t,-u); (y,x,z,u,t,v)Non-lattice operators: (x,y,z,t,u,v); (x,-y,-z,-t,-t+v,-t+u); (-x,y,-z,-u+v,-u,t-u)... (48)

SUPERCENTERED SETTING

Modulation vectors: Q1=(B,0,0), Q2=(0,B,0), Q3=(0,0,B), where B=b Centering: (0,0,0,0,0,0); (0,0,0,1/2,1/2,1/2) Non-lattice generators: (X,Y,-Z,T,U,-V); (-Z,-X,-Y,-V,-T,-U); (Y,X,Z,U,T,V) Non-lattice operators: (X,Y,Z,T,U,V); (X,-Y,-Z,T,-U,-V); (-X,Y,-Z,-T,U,-V);... (48) Reflection conditions: HKLMNP:M+N+P=2n

Stokes, Campbell & van Smaalen, submitted to Acta Cryst. A (2010): SSG(3+d)D

 $P2_1(0,0,\gamma)s \iff P2_1(0,0,\gamma)0$

Input setting

Centering none **Operators** (x,y,z,t); (-x,-y,z+1/2,t+1/2)

Standard settings

Superspace group: 4.1.5.2 P2_1(0,0,g)0 [Y:1.5] Bravais class: 1.5 P2/m(0,0,g) [JJdW:1.5]

Transformation to supercentered setting: none

Modulation vectors: q1=(0,0,g)

Centering: (0,0,0,0)

Non-lattice generators: (-x,-y,z+1/2,t)

Non-lattice operators: (x,y,z,t); (-x,-y,z+1/2,t)

Reflection conditions: 00lm:l=2n

Transformation matrix to standard supercentered setting <deleted>

d = 1: (0, 0, γ) transformed into **c**^{*} - (0, 0, γ) = (0, 0, 1- γ)

d = 2, 3: mixing of q vectors

Stokes, Campbell & van Smaalen, submitted to Acta Cryst. A (2010): SSG(3+d)D

Conclusions

Symmetry of aperiodic crystals is based on point symmetry in physical (3D) space (3+d)D Superspace groups are a (3,d)-reducible subset of (3+*d*)D space groups Equivalence of superspace groups is non-intuitive Preferably employ the supercentered group (SCG) setting SSG(3+*d*)D: WEB tool for d = 1,2,3 superspace groups. See Harold Stokes, Branton Campbell & S. van Smaalen (2010) submitted to Acta Crystallogr. A.

26 September - 2 October 2010, Carqueiranne, France

Symmetry restrictions by superspace groups

Sander van Smaalen Laboratory of Crystallography University of Bayreuth, Germany

Symmetry of the generalised electron density

$$\boldsymbol{R}_{s} = \{\boldsymbol{R}, \boldsymbol{\varepsilon} \mid \boldsymbol{V}_{s1}, \boldsymbol{V}_{s2}, \boldsymbol{V}_{s3}, \boldsymbol{V}_{s4}\}$$

$$\begin{pmatrix} \mathbf{x'}_{s1} \\ \mathbf{x'}_{s2} \\ \mathbf{x'}_{s3} \\ \mathbf{x'}_{s4} \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ n_{1}^{*} & n_{2}^{*} & n_{3}^{*} & \varepsilon \end{pmatrix} \begin{pmatrix} \mathbf{x}_{s1} \\ \mathbf{x}_{s2} \\ \mathbf{x}_{s3} \\ \mathbf{x}_{s4} \end{pmatrix} + \begin{pmatrix} \mathbf{v}_{s1} \\ \mathbf{v}_{s2} \\ \mathbf{v}_{s3} \\ \mathbf{v}_{s4} \end{pmatrix}$$

 x'_{s4} and x_{s4} are in different sections *t*.

One atom of the generalised electron density

$$\overline{\mathbf{x}} = \mathbf{L} + \mathbf{x}^{0} \qquad \overline{\mathbf{x}}_{s4} = t + \mathbf{q} \cdot \overline{\mathbf{x}}$$
$$\mathbf{x}_{si} = \overline{\mathbf{x}}_{si} + U_{i}(t + \mathbf{q} \cdot \overline{\mathbf{x}})$$
$$\mathbf{x}_{s4} = \overline{\mathbf{x}}_{s4} + \mathbf{q} \cdot \mathbf{u}(t + \mathbf{q} \cdot \overline{\mathbf{x}})$$

'Line' atoms instead of point atoms: variation of *t* from 0 to 1

$$(x_{s1}, x_{s2}, x_{s3}, x_{s4})$$

Atomic string:

$$\rho_{s\mu}(\mathbf{X}_{s}) = \rho_{\mu}(\mathbf{X}_{s1} - \mathbf{X}_{s1}^{\mu}, \mathbf{X}_{s2} - \mathbf{X}_{s2}^{\mu}, \mathbf{X}_{s3} - \mathbf{X}_{s3}^{\mu})$$

Structural parameters for a modulated structure

Each independent atom $\mu = 1,...,N$ of the basic structure has parameters:

$$\mathbf{x}^{0}[\mu] = (x_{1}^{0}[\mu], x_{2}^{0}[\mu], x_{3}^{0}[\mu])$$
 position in the unit cell (3)

$$U_{i,j}^{\mu}$$
 temperature parameters (6)

$$A_{n,i}^{\mu}, B_{n,i}^{\mu}$$
 modulation parameters (6 n_{max})

$$u_i^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} A_{n,i}^{\mu} \sin(2\pi n \overline{x}_{s4}) + B_{n,i}^{\mu} \cos(2\pi n \overline{x}_{s4})$$

$$\boldsymbol{x}_{i} = \boldsymbol{I}_{i} + \boldsymbol{x}_{i}^{0}(\boldsymbol{\mu}) + \boldsymbol{U}_{i}^{\boldsymbol{\mu}} \big(\boldsymbol{t} + \mathbf{q} \cdot (\mathbf{L} + \mathbf{x}^{0}) \big)$$

$\{R \mid v\}$ is symmetry of the basic structure

$$\begin{aligned} R_{s} &= \{R, \varepsilon \mid v_{s1}, v_{s2}, v_{s3}, v_{s4}\} \\ \begin{pmatrix} x'_{s1} \\ x'_{s2} \\ x'_{s3} \\ x'_{s4} \end{pmatrix} &= \begin{pmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ n_{1}^{*} & n_{2}^{*} & n_{3}^{*} & \varepsilon \end{pmatrix} \begin{pmatrix} x_{s1} \\ x_{s2} \\ x_{s3} \\ x_{s4} \end{pmatrix} + \begin{pmatrix} v_{s1} \\ v_{s2} \\ v_{s3} \\ v_{s4} \end{pmatrix} + \begin{pmatrix} v_{s1} \\ v_{s2} \\ v_{s3} \\ v_{s4} \end{pmatrix} \\ \begin{pmatrix} \overline{x}_{s1}(2) \\ \overline{x}_{s2}(2) \\ \overline{x}_{s3}(2) \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix} \begin{pmatrix} \overline{x}_{s1}(1) \\ \overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix} + \begin{pmatrix} v_{s1} \\ v_{s2} \\ v_{s3} \end{pmatrix} \underbrace{(1) \quad (2) \quad (1) \quad (2)} \end{aligned}$$

Transformation of modulation functions

Modulation functions are functions of the basic structure coordinates. $X_{si} = X_i = \overline{X}_i + U_i(\overline{X}_{s4})$

The transformation of a function of coordinates is

$$\mathbf{u}^{2}[\overline{\mathbf{X}}_{s4}] = R\mathbf{u}^{1}[(\{R_{s} \mid \mathbf{v}_{s}\}^{-1} \overline{\mathbf{X}}_{s})_{s4}] = R\mathbf{u}^{1}[\varepsilon^{-1}(\overline{\mathbf{X}}_{s4} - \mathbf{v}_{s4})]$$

in case of zero rational components (supercentered setting) Rotation of the modulation functions (not for occupancy) Change of their arguments

Example of mirror symmetry

$$\begin{aligned} R_{s} &= (m_{z}, -1) \quad \mathbf{q} = (0, 0, \gamma) \\ \{R_{s} \mid \mathbf{v}_{s}\} &= \{m_{z}, -1 \mid 0, 0, 0, 0\} \quad (m_{z}, -1) \quad = \begin{array}{c} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & 0 & \overline{1} & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix} \\ \begin{pmatrix} \overline{\mathbf{x}}_{s1}(2) \\ \overline{\mathbf{x}}_{s2}(2) \\ \overline{\mathbf{x}}_{s3}(2) \end{pmatrix} &= \begin{pmatrix} \overline{\mathbf{x}}_{s1}(1) \\ \overline{\mathbf{x}}_{s2}(1) \\ -\overline{\mathbf{x}}_{s3}(1) \end{pmatrix} \quad (m, \overline{1}) \colon (\mathbf{x}, -\mathbf{y}, \mathbf{z}, -t) \end{aligned}$$

$$\begin{pmatrix} U_1^2(\overline{X}_{s4}) \\ U_2^2(\overline{X}_{s4}) \\ U_3^2(\overline{X}_{s4}) \end{pmatrix} = \begin{pmatrix} U_1^1(-\overline{X}_{s4}) \\ U_2^1(-\overline{X}_{s4}) \\ -U_3^1(-\overline{X}_{s4}) \end{pmatrix}$$

Special positions

A special position is a position in the unit cell that is left invariant by the symmetry operator

An atom at a special position is mapped onto itself by the symmetry operator

As a consequence restrictions apply to the structural parameters of this atom

But

In superspace 'atoms' are lines instead of points

This gives additional possibilities and degrees of freedom

Symmetry of a structure in superspace

S. van Smaalen: Incommensurate Crystallography, Oxford University Press (2007)

 \mathbf{a}_{s3}

Restrictions on the modulation functions

S. van Smaalen: Incommensurate Crystallography, Oxford University Press (2007)

NbSe₃ SSG 11.1.5.3 $P2_1/m(0,\beta,0)s0$

 $T_{c1} = 145 \text{ K}$ $\mathbf{q} = (0, 0.241, 0)$ $|\mathbf{u}(\text{Nb3})| = 0.05 \text{ Å}$

Modulation of Se through elastic coupling toward Nb3

Atomic modulation functions

All atoms in mirror planes

CDW along **b***

S. van Smaalen et al., Phys. Rev. B 45, 3103-3106 (1992)

Mirror plane of P2₁/m(0, β ,0)s0

$$\{R_{s} \mid \mathbf{v}_{s}\} = \{m_{y}, \overline{1} \mid 0, 1/2, 0, 0\}$$

$$(m_{y}, \overline{1}): (x, -y, z, -t)$$

$$(m_{y}, -1) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \overline{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix}$$

$$\begin{pmatrix} \overline{x}_{s1}(2) \\ \overline{x}_{s2}(2) \\ \overline{x}_{s3}(2) \end{pmatrix} = \begin{pmatrix} \overline{x}_{s1}(1) \\ 1/2 - \overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix} \qquad \begin{pmatrix} u_1^2(\overline{x}_{s4}) \\ u_2^2(\overline{x}_{s4}) \\ u_3^2(\overline{x}_{s4}) \end{pmatrix} = \begin{pmatrix} u_1^1(-\overline{x}_{s4}) \\ -u_1^1(-\overline{x}_{s4}) \\ u_3^1(-\overline{x}_{s4}) \end{pmatrix}$$

Restrictions on basic-structure coordinates

$$\{R_s \mid v_s\} = \{m_y, \overline{1} \mid 0, 1/2, 0, 0\}: (x, 1/2 - y, z, -t)$$

$$\begin{pmatrix} \overline{x}_1(1) \\ \overline{x}_2(1) \\ \overline{x}_3(1) \end{pmatrix} = \begin{pmatrix} \overline{x}_1(1) \\ 1/2 - \overline{x}_2(1) \\ \overline{x}_3(1) \end{pmatrix} \implies \overline{x}_2(1) = 1/2 - \overline{x}_2(1) \\ \Leftrightarrow 2\overline{x}_s(1) = 1/2 \pmod{1} \\ \Leftrightarrow \overline{x}_2 = 1/4 \quad \text{or} \quad 3/4$$

 $\begin{pmatrix} \overline{x}_{1}(1) \\ \overline{x}_{2}(1) \\ \overline{x}_{3}(1) \end{pmatrix} = \begin{pmatrix} \overline{x}_{s1} \\ 1/4 \\ \overline{x}_{s3} \end{pmatrix}; \quad \begin{pmatrix} \overline{x}_{s1} \\ 3/4 \\ \overline{x}_{s3} \end{pmatrix}$

Atoms in mirror planes at $x_2 = 1/4$ and 3/4

Modulation functions for atom μ on $(x_1, 1/4, x_3)$

$$\{R_{s} \mid v_{s}\} = \{m_{y}, \overline{1} \mid 0, 1/2, 0, 0\}: (x, 1/2 - y, z, -t)$$

$$\left(u_{1}^{\mu}(\overline{x}_{s4}) \\ u_{2}^{\mu}(\overline{x}_{s4}) \\ u_{3}^{\mu}(\overline{x}_{s4}) \\ u_{3}^{\mu}(\overline{x}_{s4}) \\ \end{bmatrix} = \left(\begin{array}{c} u_{1}^{\mu}(-\overline{x}_{s4}) \\ -u_{2}^{\mu}(-\overline{x}_{s4}) \\ u_{3}^{\mu}(-\overline{x}_{s4}) \\ u_{3}^{\mu}(-\overline{x}_{s4}) \\ \end{bmatrix} \right)$$

$$U_{1}(\overline{x}_{s4}) = u_{1}(-\overline{x}_{s4}) \implies u_{1}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} B_{n,1}^{\mu} \cos[2\pi n\overline{x}_{s4}] \quad \text{even}$$

$$U_{1}(\overline{x}_{s4}) = -u_{2}(-\overline{x}_{s4}) \implies u_{2}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} A_{n,2}^{\mu} \sin[2\pi n\overline{x}_{s4}] \quad \text{odd} \quad \bigotimes$$

$$u_{3}(\overline{x}_{s4}) = u_{3}(-\overline{x}_{s4}) \implies u_{3}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} B_{n,3}^{\mu} \cos[2\pi n\overline{x}_{s4}] \quad \text{even}$$

Crystal structure of TiOCI at room temperature

- *Pmmn* a = 3.78 b = 3.34 c = 8.03 Å
- Chains of Ti along **a** and along **b**
- Isostructural compounds: TiOCI, TiOBr, VOCI, FeOCI

H. Schäfer et al., Z Anorg. Allg. Chem. 295, 268 (1958)

Monoclinic twinned incommensurate structure of TiOCI

Incommensurately modulated below $T_{c2} = 90 \text{ K}$ $\mathbf{q} = (0.07, 0.511, 0)$ Modulation wavevector P2/n($\alpha \beta 0$)-10 (**c** unique) Superspace group 13.1.2.1 P2/b(α , β ,0)00 Modulation functions (i=1,2,3) $U_i [t + \mathbf{q} \cdot \mathbf{x}^0]$ Structure refinement R(main) = 0.018R(sat) = 0.080Lock-in transition toward $\mathbf{q} = (0 \ 1/2 \ 0)$ below $T_{c1} = 67 \ K$ Atoms on twofold axes

S. van Smaalen *et al.*, PRB **72**, 020105(R) (2005)

A. Schönleber *et al.*, Phys. Rev. B **73**, 214410 (2006)

Superspace group P2/n($\alpha \beta 0$)-10

Origin-dependent translational components cannot be avoided.

$$(E,1): (x_{s1} \ x_{s2} \ x_{s3} \ x_{s4})$$

$$(2,\overline{1}): (-x_{s1} \ -x_{s2} \ x_{s3} \ -x_{s4})$$

$$(i,\overline{1}): (1/2 - x_{s1} \ 1/2 - x_{s2} \ -x_{s3} \ -x_{s4})$$

$$(m,1): (1/2 + x_{s1} \ 1/2 + x_{s2} \ -x_{s3} \ x_{s4})$$

SSG(3+d)D 13.1.2.1 P2/b(α , β ,0)00

Exercise: twofold rotation (2, -1) at the origin

$$\{R_{s} \mid \mathbf{v}_{s}\} = \{2^{z}, -1 \mid 0, 0, 0, 0\} \qquad \mathbf{q} = (\alpha, \beta, 0)$$

$$(2^{z}, \overline{1}): (-x, -y, z, -t) \qquad (2^{z}, \overline{1}) = \begin{pmatrix} \overline{1} & 0 & 0 & 0 \\ 0 & \overline{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix}$$

$$\{2^{z}, \overline{1} \mid 0, 0, 0, 0\}: (-x, -y, z, -t)$$

$$\begin{pmatrix} \overline{x}_{s1}(2) \\ \overline{x}_{s2}(2) \\ \overline{x}_{s3}(2) \end{pmatrix} = \begin{pmatrix} -\overline{x}_{s1}(1) \\ -\overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix} \qquad \qquad \begin{pmatrix} u_1^2(\overline{x}_{s4}) \\ u_2^2(\overline{x}_{s4}) \\ u_3^2(\overline{x}_{s4}) \end{pmatrix} = \begin{pmatrix} -u_1^1(-\overline{x}_{s4}) \\ -u_2^1(-\overline{x}_{s4}) \\ u_3^1(-\overline{x}_{s4}) \end{pmatrix}$$

Restrictions on basic-structure coordinates by (2, -1)

$$\begin{pmatrix} \overline{x}_{s1}(1) \\ \overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix} = \begin{pmatrix} -\overline{x}_{s1}(1) \\ -\overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix}$$

 $\Rightarrow \overline{X}_{s1}(1) = -\overline{X}_{s1}(1)$

$$\Leftrightarrow 2\overline{x}_{s1}(1) = 0 \pmod{1}$$

$$\Leftrightarrow \overline{x}_{s1} = 0 \text{ or } 1/2$$

$$\begin{pmatrix} \overline{x}_{s1}(1) \\ \overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \overline{x}_{s3} \end{pmatrix} \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \\ \overline{x}_{s3} \end{pmatrix} \begin{pmatrix} 1/2 \\ 0 \\ \overline{x}_{s3} \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/2 \\ \overline{x}_{s3} \end{pmatrix}$$

Four twofold axes in the unit cell

Modulation functions for an atom on $(0, 0, x_3)$

$$\begin{pmatrix} u_1^1(\overline{X}_{s4}) \\ u_2^1(\overline{X}_{s4}) \\ u_3^1(\overline{X}_{s4}) \end{pmatrix} = \begin{pmatrix} -u_1^1(-\overline{X}_{s4}) \\ -u_2^1(-\overline{X}_{s4}) \\ u_3^1(-\overline{X}_{s4}) \end{pmatrix}$$

$$u_{1}(\overline{x}_{s4}) = -u_{1}(-\overline{x}_{s4}) \implies u_{1}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} A_{n,1}^{\mu} \sin[2\pi n \overline{x}_{s4}] \quad \text{odd}$$
$$u_{2}(\overline{x}_{s4}) = -u_{2}(-\overline{x}_{s4}) \implies u_{2}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} A_{n,2}^{\mu} \sin[2\pi n \overline{x}_{s4}] \quad \text{odd}$$
$$u_{3}(\overline{x}_{s4}) = u_{3}(-\overline{x}_{s4}) \implies u_{3}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} B_{n,3}^{\mu} \cos[2\pi n \overline{x}_{s4}] \quad \text{even}$$

Structural parameters for an atom on $(0, 0, x_3)$

$$u_{1}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} A_{n,1}^{\mu} \sin[2\pi n \overline{x}_{s4}] \quad \text{odd}$$
$$u_{2}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} A_{n,2}^{\mu} \sin[2\pi n \overline{x}_{s4}] \quad \text{odd}$$
$$u_{3}^{\mu}(\overline{x}_{s4}) = \sum_{n=1}^{\infty} B_{n,3}^{\mu} \cos[2\pi n \overline{x}_{s4}] \quad \text{even}$$

$$B_{n,1}^{\mu} = B_{n,2}^{\mu} = A_{n,3}^{\mu} = 0$$

 $U^{11} U^{22} U^{33} U^{12} U^{13} = U^{23} = 0$

The twofold rotation (2, -1) at (0, 0, 0, 1/4)

$$\{R_{s} \mid \mathbf{v}_{s}\} = \{2^{z}, -1 \mid 0, 0, 0, 0.5\} \quad \mathbf{q} = (\alpha, \beta, 0)$$

$$(2^{z}, \overline{1}): \quad (-x, -y, z, -t) \qquad (2^{z}, \overline{1}) = \begin{pmatrix} \overline{1} & 0 & 0 & 0 \\ 0 & \overline{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \overline{1} \end{pmatrix}$$

$$\{2^{z}, \overline{1} \mid 0, 0, 0, 0.5\}: \quad (-x, -y, z, 0.5 - t)$$

$$\begin{pmatrix} \overline{x}_{s1}(2) \\ \overline{x}_{s2}(2) \\ \overline{x}_{s2}(2) \\ \overline{x}_{s3}(2) \end{pmatrix} = \begin{pmatrix} -\overline{x}_{s1}(1) \\ -\overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix} \qquad \begin{pmatrix} u_1^2(\overline{x}_{s4}) \\ u_2^2(\overline{x}_{s4}) \\ u_3^2(\overline{x}_{s4}) \end{pmatrix} = \begin{pmatrix} -u_1^1[-(\overline{x}_{s4} - 1/2)] \\ -u_2^1[-(\overline{x}_{s4} - 1/2)] \\ u_3^1[-(\overline{x}_{s4} - 1/2)] \end{pmatrix}$$

Restrictions on basic-structure coordinates by (2, -1) at (0, 0, 0, 1/4)

$$\begin{pmatrix} \overline{X}_{s1}(1) \\ \overline{X}_{s2}(1) \\ \overline{X}_{s3}(1) \end{pmatrix} = \begin{pmatrix} -\overline{X}_{s1}(1) \\ -\overline{X}_{s2}(1) \\ \overline{X}_{s3}(1) \end{pmatrix}$$

$$\Rightarrow \overline{X}_{s1}(1) = -\overline{X}_{s1}(1)$$

$$\Leftrightarrow 2\overline{x}_{s1}(1) = 0 \pmod{1}$$

$$\Leftrightarrow \overline{x}_{s1} = 0 \text{ or } 1/2$$

$$\begin{pmatrix} \overline{x}_{s1}(1) \\ \overline{x}_{s2}(1) \\ \overline{x}_{s3}(1) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \overline{x}_{s3} \end{pmatrix} \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \\ \overline{x}_{s3} \end{pmatrix} \begin{pmatrix} 1/2 \\ 0 \\ \overline{x}_{s3} \end{pmatrix} \begin{pmatrix} 1/2 \\ 0 \\ \overline{x}_{s3} \end{pmatrix}$$

Restrictions on the basic-structure coordinates are the same as before

Modulation functions for an atom on (2,-1) at (0,0,0,1/4)

$$\begin{pmatrix} u_1^1(\bar{x}_{s4}) \\ u_2^1(\bar{x}_{s4}) \\ u_3^1(\bar{x}_{s4}) \end{pmatrix} = \begin{pmatrix} -u_1^1(1/2 - \bar{x}_{s4}) \\ -u_2^1(1/2 - \bar{x}_{s4}) \\ u_3^1(1/2 - \bar{x}_{s4}) \end{pmatrix}$$

$$\Rightarrow \begin{cases} u_1(\overline{x}_{s4}) = u_1(-\overline{x}_{s4}) & \text{odd harmonics} \implies \text{even function} \\ u_1(\overline{x}_{s4}) = -u_1(-\overline{x}_{s4}) & \text{even harmonics} \implies \text{odd function} \end{cases}$$

$$\Rightarrow \begin{cases} u_3(\overline{x}_{s4}) = -u_3(-\overline{x}_{s4}) & \text{odd harmonics} \implies \text{odd function} \\ u_3(\overline{x}_{s4}) = u_3(-\overline{x}_{s4}) & \text{even harmonics} \implies \text{even function} \end{cases}$$

Symmetry restrictions i = 1 for odd harmonics

$$\begin{aligned} u_{1}^{\mu}(\bar{x}_{s4}) &= -u_{1}^{\mu}(1/2 - \bar{x}_{s4}) & u_{1}^{\mu}(\bar{x}_{s4}) &= A_{1,1}^{\mu} \sin[2\pi \bar{x}_{s4}] \\ -A\sin[2\pi(1/2 - \bar{x}_{s4})] &= A\sin[2\pi(\bar{x}_{s4} - 1/2)] \\ &= -A\sin[2\pi \bar{x}_{s4}] &= A\sin[2\pi \bar{x}_{s4}] \end{aligned}$$

$$\Rightarrow A_{n,1}^{\mu} = 0 \quad (n = \text{odd})$$

$$-B\cos[2\pi(1/2-\overline{x}_{s4})] = -B\cos[2\pi(\overline{x}_{s4}-1/2)]$$
$$= B\cos[2\pi\overline{x}_{s4}] \equiv B\cos[2\pi\overline{x}_{s4}]$$

 \Rightarrow $B_{n,1}^{\mu}$ not restricted (n = odd)

Symmetry restrictions i = 3 for odd harmonics

$$U_{3}^{\mu}(\bar{x}_{s4}) = U_{3}^{\mu}(1/2 - \bar{x}_{s4}) \qquad U_{3}^{\mu}(\bar{x}_{s4}) = A_{1,3}^{\mu} \sin[2\pi \bar{x}_{s4}]$$

$$A \sin[2\pi (1/2 - \bar{x}_{s4})] = -A \sin[2\pi (\bar{x}_{s4} - 1/2)]$$

$$= A \sin[2\pi \bar{x}_{s4}] \equiv A \sin[2\pi \bar{x}_{s4}]$$

 \Rightarrow $A_{n,3}^{\mu}$ not restricted (n = odd)

$$B\cos[2\pi(1/2 - \overline{x}_{s4})] = B\cos[2\pi(\overline{x}_{s4} - 1/2)]$$
$$= B\cos[2\pi\overline{x}_{s4}] \equiv B\cos[2\pi\overline{x}_{s4}]$$

 $\Rightarrow B_{n,3}^{\mu} = 0 \quad (n = \text{odd})$

Symmetry restrictions *i* = 1 for even harmonics

$$u_{1}^{\mu}(\overline{x}_{s4}) = -u_{1}^{\mu}(1/2 - \overline{x}_{s4}) \qquad u_{1}^{\mu}(\overline{x}_{s4}) = A_{2,1}^{\mu} \sin[2\pi 2\overline{x}_{s4}]$$

 $-A\sin[2\pi 2(1/2 - \overline{x}_{s4})] = A\sin[2\pi 2(\overline{x}_{s4} - 1/2)]$

$$= A \sin[2\pi (2\overline{x}_{s4} - 1)] = A \sin[2\pi 2\overline{x}_{s4}] \equiv A \sin[2\pi 2\overline{x}_{s4}]$$

 \Rightarrow $A_{n,1}^{\mu}$ not restricted (n = even)

$$-B\cos[2\pi 2(1/2 - \overline{x}_{s4})] = -B\cos[2\pi 2(\overline{x}_{s4} - 1/2)]$$

$$= -B\cos[2\pi(2\overline{x}_{s4} - 1)] = -B\cos[2\pi 2\overline{x}_{s4}] \equiv B\cos[2\pi 2\overline{x}_{s4}]$$

 $\Rightarrow B_{n,1}^{\mu} = 0$ (*n* = even)

Symmetry restrictions i = 3 for even harmonics

$$u_{3}^{\mu}(\bar{x}_{s4}) = u_{3}^{\mu}(1/2 - \bar{x}_{s4}) \qquad u_{3}^{\mu}(\bar{x}_{s4}) = A_{2,3}^{\mu} \sin[2\pi 2\bar{x}_{s4}]$$

$$A \sin[2\pi 2(1/2 - \bar{x}_{s4})] = -A \sin[2\pi 2(\bar{x}_{s4} - 1/2)]$$

$$= -A \sin[2\pi (2\bar{x}_{s4} - 1)] = -A \sin[2\pi 2\bar{x}_{s4}] \equiv A \sin[2\pi 2\bar{x}_{s4}]$$

$$\Rightarrow A_{n,3}^{\mu} = 0 \quad (n = \text{even})$$

$$B\cos[2\pi 2(1/2 - \overline{x}_{s4})] = B\cos[2\pi 2(\overline{x}_{s4} - 1/2)]$$

 $= B\cos[2\pi(2\overline{x}_{s4} - 1)] = B\cos[2\pi 2\overline{x}_{s4}] \equiv B\cos[2\pi 2\overline{x}_{s4}]$

 \Rightarrow $B_{n,3}^{\mu}$ not restricted (n = even)

Special positions on (2, -1)—two origins

$$\begin{pmatrix} -x, -y, z, -t \end{pmatrix} \qquad \begin{pmatrix} -x, -y, z, 0.5 - t \end{pmatrix}$$

$$\begin{pmatrix} x_1^0 \\ x_2^0 \\ x_3^0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ x_3^0 \end{pmatrix} \qquad \begin{pmatrix} x_1^0 \\ x_2^0 \\ x_3^0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ x_3^0 \\ x_3^0 \end{pmatrix}$$

 $B_{n,1}^{\mu} = B_{n,2}^{\mu} = A_{n,3}^{\mu} = 0$

 $U^{11} U^{22} U^{33} U^{12}$

 $U^{13} = U^{23} = 0$

Conclusions

(3+*d*)D Superspace groups provide

Restrictions on the basic-structure coordinates

Restrictions on the shapes and phases of the modulation functions

Mathematical form of functions depends on origin

Reduction of the independent parameters makes structure refinements possible