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Diffraction by periodic objects !!

1/10/10 

QM teaches us that the scattering of an object depends on the 
scattering vector!

where s0 and s indicate the direction of the incident resp. scattered 
beam. Morever, if λ is the wavelength of the incident beam !

The total scattering of an object with volume V and density function  
ρ(x) is given by!

|s| = |s0| =
1
λ

S = s− s0

GV (S) =
�

V
ρ(x) exp(2πiS · x)dx
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Diffraction by periodic objects (2) !!

1/10/10 

The FT of the density function is given by!

The difference between the two relations G(S) et GV(S) resides in the 
integration domain. !
This can be accommodated by defining a new function h(x) which is 1 
inside the crystal and 0 everywhere else.!
In a one dimensional periodic crystal with N cells, this yields!

G(S) =
� ∞

−∞
ρ(x) exp(2πiS · x)dx

h(x) =
�

1 for |x| ≤ Na
2

0 everywhere else
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Diffraction by periodic objects (3) !!

1/10/10 

It can be shown that!

For large values of N this function is close to the Dirac δ (S) function. 
In three dimensions!
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Diffraction by periodic objects (4) !!

1/10/10 

Finally we get!

as H(S) → δ(S) for N ≫ 0, which is the case here. !

The volume factor has been omitted in this expression.   !
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Scattering from assemblies of atoms!

27/09/10 

The content of a unit cell can be conveniently expressed by the 
convolution product!

ri

ri-1

ri+1
O

ρi-1!
ρi!

ρi+1!
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Scattering from assemblies of atoms (2)!!

1/10/10 

As the density function ρ(x) is periodic, we can exploit the property of 
the convolution product and express the density function over the 
crystal by!

ai represent the lattice constants and ni define  the lattice nodes. The 
sum over the ∞ number of terms is justified as seen before. !
The FT F [ρ(x)] = G(S) is given by!

G(S) = R(S).F(S)!

where R(S) is the FT of the triple sum and F(S) the FT of the unit cell 
content given between [ ].!

ρ(x) =
∞�

n1=−∞

∞�

n2=−∞

∞�

n3=−∞
δ{x− (n1a1 + n2a2 + n3a3)} ∗

�
�

i

ρi(x) ∗ δ(x− xi)

�
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Scattering from assemblies of atoms (3)!

27/09/10 

The Fourier transform of the unit cell content!

can be further simplified by replacing the integral by a summation over 
the atoms contained in the unit cell. By assuming that the electron 
density around each atom is independent of the compound, we define 
the atomic scattering factor  !

F (S) =
�

ρ(r) exp(2πiS · r)dr

fµ(S) ≡
�

atom
ρµ(r) exp(2πiS · r)dr

F [ρ(r)] = F (S) =
�

µ

fµ(S) exp(2πiS · rµ)

and finally obtain the structure factor. !
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Scattering from assemblies of atoms (4)!

1/10/10 

We still have to evaluate R(S).!

It turns out that the FT of a Dirac function is also a Dirac function 
where the basis vectors ai* are the so-called reciprocal lattice vectors 
satisfying the following relation!

Consequently R(S) is everywhere 0 except on the nodes hi of the 
reciprocal vector h!

ai.a∗j = δij

R(S) =
∞�

h1=−∞

∞�

h2=−∞

∞�

h3=−∞
δ{S− (h1a∗1 + h2a∗2 + h3a∗3)}

h = h1a
∗

1 + h2a
∗

2 + h3a
∗

3
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The decisive steps to aperiodic-crystallography!

… !!Dehlinger (1927), Preston (1938), Kochendörfer (1939), Chao 
& Taylor (1940), Daniel & Lipson (1943), Hargreaves (1952), 
…!

1967 !Masaaki Korekawa (University of Munich)!
»  Theory of satellite reflections (in german)!

1972 !P.M. de Wolff (IUCr Kyoto)!
»  4-d space groups of γ-Na2CO3 an incommensurate structure!

A. Janner (IUCr Kyoto, same session as de Wolff !)!
»  Symmetry groups of lattice vibrations!

1981 !Makovicky & Hyde!
» Composite crystals!

1984 !Shechtman, Blech, Gratias & Cahn!
»  Quasicrystals, Al-Mn alloy with sharp 10-fold symmetry pattern!

27/09/10	
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The Calaverite puzzle!
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a*

c*

Reconstructed h2l layer of the non-periodic structure γ-Na2CO3!
H = h1a1* + h3a3* + mq*!

mq*!

27/09/10 



16 
International School 

on 
Aperiodic Crystals

Layer of a diffraction pattern requesting more than two integers to 
index the pattern. !
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1000!

0100!

0010!

1100!

0110!

1010!

1110!

0000!

1001!

0101!

0011!

1101!

0111!

1011!

1111!

0001!

How to generate an hypercube!
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Another example of a diffraction pattern requesting 4 integer indices to 
index each spot!
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What is a crystal? 

What is an aperiodic crystal?!

27/09/10	
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What is a crystal?!

A material is a crystal if it has essentially a sharp diffraction 
pattern. The word essentially means that most of the intensity of 
the diffraction is concentrated in relatively sharp Bragg peaks, 
besides the always present diffuse scattering. In all cases, the 
positions of the diffraction peaks can be expressed by!

Here ai* and hi are the reciprocal lattice vectors and integer 
coefficients respectively and the number n is the minimum for 
which the positions of the peaks can be described with integer 
coefficient hi. The conventional crystals are a special class, though 
very large, for which n = 3.!

27/09/10	
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What is an aperiodic crystal?!

If h is a reciprocal vector with rank = n!
h= h1a1*+ h2a2*+ h3a3*+…+ hnan*!

h describes a periodic crystal if its space is equal to its rank!
h describes an aperiodic crystal if its rank is larger than its space!
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A short break to solve exercise 1!

In the printed version, the text is given at the end of the file!
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Where do aperiodic crystals occur?!

•  In all types of crystalline materials!
–  Minerals!
–  Metals, alloys (quasicrystals)!
–  Organic, inorganic materials!
–  Proteins, macro-molecules!

•  In pressure or temperature induced phase transitions!
‒  α→inc →β quartz!

•  ...!

27/09/10	
  



25 
International School 

on 
Aperiodic Crystals

Lecture content!

1.  Introduction!
–  Diffraction by classical 3D periodic crystals!
–  The crystal model!

2.  The end of a convenient paradigm!
–  Historical backgrounds and examples!
–  The crystal redefined!

3.  Introduction to the superspace formalism!
–  Structure examples!
–  Simulation!
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–  Numerical recipes for the calculation of SF!

5.  The resolution of aperiodic crystals!
–  The charge flipping algorithm!
–  Demonstration!

6.  Conclusion!
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(3+1)-dimensional extension of the reciprocal space with satellite 
reflections!

27/09/10	
  



27 
International School 

on 
Aperiodic Crystals

Variants of aperiodic structures (according to A. Yamamoto)!
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From reciprocal to direct superspace!

aS1* = (a1*, 0)!
aS2* = (a2*, 0)!
aS3* = (a3*, 0)!
aS4* = (q, 1)!

aS1 = (a1, -q·a1)!
aS2 = (a2, -q·a2)!
aS3 = (a3, -q·a3)!
aS4 = (0, 1)!

aSi*·aSj  = δij!

27/09/10	
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Mapping of atomic displacements from physical space into the supercell!

aS1 = (a1, -q·a1)!

aS4 = (0, 1)!

x4!

x1!

t! p!

27/09/10	
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R 
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Example: the layer structure of LaTiO3!

27/09/10 

Two projections of the 
LaTiO3 layer. !

The structure can be 
considered as an 
alternating sequence of 
LaO3 and Ti layers!

La !
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The layer structure of LaTiO3 represented in the superspace  !
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Simulation: from superspace to real structure!
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Simulation of diffraction patterns from modulation waves!

Authors: Th. Proffen and R.B. Neder !!
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Do we have space group equivalent in superspace?!

•  Yes!!
•  (3+1) dimensional superspace groups are four-dimensional space 

groups having some additional properties!
•  775 inequivalent groups which are called superspace groups!
•  Listed in IT vol C.!
• Also freely available from open databases on Internet!

27/09/10	
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Lecture content!
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–  Diffraction by classical 3D periodic crystals!
–  The crystal model!

2.  The end of a convenient paradigm!
–  Historical backgrounds and examples!
–  The crystal redefined!

3.  Introduction to the superspace formalism!
–  Structure examples!
–  Simulation!

4.  The structure factor (SF) of incommensurate crystals!
–  Numerical recipes for the calculation of SF!

5.  The resolution of aperiodic crystals!
–  The charge flipping algorithm!
–  Demonstration!

6.  Conclusion!
27/09/10 
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The structure factor of a (3+1)d crystal 
!(Paciorek et al. J. Appl. Cryst. 1992)!

and!

Where rµ represents the basic atomic positions on which the 
modulation displacements uµ  are applied.!

The structure associated to rµ  is called the basic structure 
whereas the complete structure is the modulated structure. !

27/09/10	
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The split basis expressions!

27/09/10 

a∗Si = (a∗i , 0) i = 1, 2, 3,

a∗S4 = (q, 1)

aSi = (ai,−qi) i = 1, 2, 3,

aS4 = (0, 1)

It is convenient to introduce the split basis notation in order to 
separate the physical space from the internal space !

which in direct translates space to!

These expression satisfies the condition if we limit to (3+1)D!

aSi · a∗Sj = δij , i, j = 1, ..., 4
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The split basis expressions (2)!

27/09/10 

Any spot on the diffraction pattern is given by!

in direct space any vector can be written!

With the conditions!

HS ≡ (H,HI) = h + h4q, h4) =
4�

1

hia
∗
Si

rS ≡ (r, rI) = (r, t) =
4�

1

xiaSi

r =
3�

1

xiaSi

x4 = q · r + t
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The split basis expressions (3)!

27/09/10 

The scalar product between the two vectors can be expressed in a 
variety of equivalent forms!

HS · rS ≡ (H,HI) · (r, rI)
= H · r + HIt

= h · r + h4x4

=
�4

i=1 hixi

All these forms can be found in the literature and are the source of 
many ambiguities.!
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The most general form of the structure factor given in IT!

27/09/10 

FH =
�

µ

fµ
H

�

ΩI

dt pµ(t)

× exp{2πi(H,HI) · (rµ + u
µ(t), t)}

Which can be transformed to the more appropriate expression in 
(3+1)D!

×
� 1

0
dt pµ(t) exp{2πi(H · uµ(t) + h4t)}

FH =
�

µ

fµ
H

exp(2πiH · rµ)
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The most general form of the structure factor given in IT (2)!

27/09/10 

The modulation parameters (displacement and population) must 
satisfy the following conditions for real valued parameters!

uµ(t) =
�

n

uµ
n exp(2πint), uµ

−n = uµ∗
n

pµ(t) =
�

n

pµ
n exp(2πint), pµ

−n = pµ∗
n
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The structure factor of a (3+1)D adapted for LS refinement!

27/09/10 

The following basis functions are frequently used in this expansion  !

tn(x) =






1, n = 0
cos(2πnx), n = 2m− 1, n = 0, · · · , N
sin(2πnx), n = 2m

The atomic coordinates, anisotropic displacement parameters and 
occupational parameters are all periodic functions of the internal 
coordinate x4     !

xµ
i (x̄4) = x̄µ

i +
�

n>0

uµ
i,ntn(x̄4), i = 1, · · · , 3

Bµ
ij(x̄4) =

�

n≥0

Bµ
ij,ntn(x̄4), B̄µ

ij ≡ Bµ
ij,0, i, j = 1, · · · , 3

Pµ(x̄4) =
�

n≥0

Pµ
n tn(x̄4), P̄µ ≡ Pµ

0
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The structure factor of a (3+1)D adapted for LS refinement (2)!

27/09/10 

The geometrical part of the SF for an atom µ generated by the (3+1)D 
superspace symmetry operation s depends on the internal coordinate 
and is given by!

The rotational part of the symmetry element (Rs,τs) is applied to the 
reflection indices:!

G
µ,s(x̄4) = exp

�
2πi

� 3�

i=1

[hs
i x̄

µ
i + H

s
i u

µ
i (x̄4) + hiτ

s
i ] + h

s
4x̄4 + h4τ

s
4

��

hs
i =

4�

j=1

Rs
jihj , i = 1, · · · , 4

H
s
i = h

s
i + h

s
4qi, i = 1, · · · , 4

qi are the components of the modulation vector!
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The structure factor of a (3+1)D adapted for LS refinement (3)!

27/09/10 

The anisotropic Debye-Waller terms are given by!

It is convenient to introduce quantities describing the contribution to 
the SF from all atoms related by symmetry to atom µ:  !

T
µ,s(x̄4) = exp

�
−

3�

i,j=1

H
s
i H

s
j Bij(x̄4)

�

F̄µ(x̄4) =
�

s

F̄µ,s(x̄4) ≡
�

s

Tµ,s(x̄4)Gµ,s(x̄4)

Fµ(x̄4) =
�

s

Fµ,s(x̄4) ≡ Pµ(x̄4)
�

s

F̄µ,s(x̄4)
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The structure factor of a (3+1)D adapted for LS refinement (4)!

27/09/10 

Finally, the SF is the sum of integrals over a period of the internal 
coordinate:!

Each atom contribution  is multiplied by an appropriate multiplicity Mµ 

and scattering factor f µ.!

This form is particularly adapted for numerical recipes with very fast 
and efficient algorithms. We only focus on the expression in ⟨⟩.!

F (H) =
�

µ

Mµfµ

� 1

0
dx̄4F

µ(x̄4) ≡
�

µ

Mµfµ �Fµ�
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The structure factor of a (3+1)D adapted for LS refinement (5)!
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The last expression of the SF is a very convenient form to obtain partial 
derivatives where the expression in ⟨⟩ can easily be estimated 
numerically by discrete Fourier transform (DFT)!

∂F

∂x̄µ
i

= fµMµ
�

s

2πihs
i �t0Fµ,s�

∂F

∂u
µ
i,n

= f
µ
M

µ
�

s

2πiH
s
i �tnF

µ,s�

∂F

∂B
µ
ij,n

= −f
µ
M

µ
�

s

H
s
i H

s
j �tnF

µ,s�
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The efficiency of the DFT algorithm for the calculation of the derivatives!

27/09/10 
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Other algorithm for simple harmonic function !

27/09/10 

In some particular cases, it is possible to use some approximation based 
on the Jacobi-Auger expansion using Bessel functions !

exp(iz sinα) =
∞�

m=−∞
exp(−imα)J−m(z)

In this case the SF associated with atom µ can be expressed (up to a 
phase factor) by!

Fµ(h, k, l, m) = fµ(H) exp(2πiH · rµ
0 )× Jm(2πiH · Uµ)

With the atomic modulation function expressed by!

uµ = Uµ cos(2πq · rµ)
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Lecture content!
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–  Diffraction by classical 3D periodic crystals!
–  The crystal model!
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–  Historical backgrounds and examples!
–  The crystal redefined!

3.  Introduction to the superspace formalism!
–  Structure examples!
–  Simulation!

4.  The structure factor (SF) of incommensurate crystals!
–  Numerical recipes for the calculation of SF!

5.  The resolution of aperiodic crystals!
–  The charge flipping algorithm!
–  Demonstration!

6.  Conclusion!
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The phase problem in any dimension!

The electron density of a structure is obtained from the relation !

xS represent the atomic position in any dimension (usually up to 6). The 
structure factor is a complex magnitude and only the module can be 
retrieved from experiment!

The reciprocal  vector is of dimension N !

ρ(xS) =
1

VS

∑

H

F (H)exp(−2πiHxS)

F (H) =
n∑

j=1

fj(H) exp(2πiHxSj) = |F (H)| exp(iφH)

I(H) ∝ |F (H)|2

H = h1a
∗

1 + h2a
∗

2 + · · · + hNa
∗

N
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The charge flipping (CF) algorithm  
(Oszlanyi & Süto, Acta Cryst.  2004, 2005) 

F

F
H
= F

H

FFT -1 FFT

g

G

inversion of 
densities below 
(charge flipping)

random (or zero) 
phases on 
experimental data G

H

G
H

0
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Evolution of the iterative algorithm!

Iterations (n)

R(n)
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CF in real time!

•  Live demonstration from our CF applet (http://escher.epfl.ch/flip/) 
directly available on the web!

•  (alternatively offline version)!

–  Create your structure with a drawing tool!
–  Calculate the modulus of the structure factor!
–  Apply CF to solve the structure  !
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CF in action!
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Conclusions!

•  Aperiodic crystals are much more than some exceptional and  
interesting objects for curious scientists.!

•  They are of great help to understand the subtle interactions in 
matter.!

•  We shall see later that the superspace concept is of great help for a 
better understanding of structure-property relations.  !

•  Efficient tools have been (and still are) developed to deal with 
aperiodic structures.!

•  Diffractometer and structure refinement software have been adapted 
to deal with aperiodic materials.!

27/09/10 
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Introduction	
  to	
  aperiodic	
  crystals	
  
 

Gervais Chapuis 

Exercise	
  1	
  

The structure of the mineral Calaverite (Au1-x Agx)Te2 has been a 
challenge for mineralogists for about hundred years, starting 1895. 

 
1895-1902 Penfield, Ford 

Face-indexing difficulties, unreasonably 
high indices 
Monoclinic crystal 

1902 Smith 
Indexing of the faces assuming 
3 interpenetrating lattices 
2 monoclinic + 1 triclinic 

1931 Goldschmid, Palache, Peacock 
105 specimen studied 
92 crystal forms 
Law of Rational Indices given up 

1964 Buerger,  
Letter to P.M. de Wolff suggesting possible 
incommensurate modulation 

1983 Van Tendeloo, Gregoriades & 
Amelinckx 
HREM: Incommensurate modulation with 
wave-vector 
q = (α, o, γ) 

The gnomonic projection of the mineral resulting from a series of 
more than 100 samples from different origins is illustrated in Table 1. 
The gnomonic projection of the normal to the crystalline faces can be 
considered has an undistorted representation of a reciprocal layer 
plane. 
Goldschmid, Palache and Peacock (GPP) realised that the so-called S-
Punkte (open circles on the figure) from a reciprocal monoclinic grid 
normal to the monoclinic axis b. 
The lattice constants of the unit cell derived from the S points are  

a = 7.195, b = 4.415, c = 5.070 (Å) and β = 90.038(4)° 



2 

1. Find the reciprocal vectors a* and c* and the corresponding 
indices of the S-points (including the open grey circles which I 
introduced for the sake of clarity). 

2. Assuming that all the red dots correspond to satellite reflections, 
find the modulation vector q permitting the indexing of all the 
reflexions with four integers. 

3. Estimate the value of the q vector. 
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Solution	
  1 

The vector a* and c* can be easily found remembering their reciprocal 
properties relative to a and c.  
All the points represented in the gnomonic projection can be found on a 
series of parallel lines as represented in the figure below. Moreover, each 
line can be associated with the S-points indicated by a letter. Thus all the 
points can be indexed with four integers, the fourth index of the S-points 
being 0. 
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The additional vector q has the approximate components (-.40; +.45) 
relative to a* respectively  c*. 
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The next and final steps of the Calaverite story: 

1985 Dam, Janner, Donnay 
Morphological determination of the 
modulation wave-vector. 
α = -0.4095, γ = .4492 

1988 Schutte, de Boer 
q = -.4076(16) a* + .4479(6) c* 
Resolution by x-ray diffraction. 

 
T. Janssen, G. Chapuis and M. de Boissieu give more details of the solution 
in pages 392 and ff of the textbook “Aperiodic Crystals”. 
 
All the faces of the twin crystal of calaverite can be indexed with four 
indices. 
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